-
1
-
-
9644255705
-
-
0584-8539
-
D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, Spectrochim. Acta, Part A 60, 3325 (2004). 0584-8539
-
(2004)
Spectrochim. Acta, Part A
, vol.60
, pp. 3325
-
-
Nelson, D.D.1
McManus, B.2
Urbanski, S.3
Herndon, S.4
Zahniser, M.S.5
-
4
-
-
33750584463
-
-
0963-0252 10.1088/0963-0252/15/4/S02.
-
J. Röpcke, G. Lombardi, A. Rousseau, and P. B. Davies, Plasma Sources Sci. Technol. 0963-0252 10.1088/0963-0252/15/4/S02 15, S148 (2006).
-
(2006)
Plasma Sources Sci. Technol.
, vol.15
, pp. 148
-
-
Röpcke, J.1
Lombardi, G.2
Rousseau, A.3
Davies, P.B.4
-
5
-
-
38849125806
-
-
0948-1907 10.1002/cvde.200606584.
-
G. D. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, Chem. Vap. Deposition 0948-1907 10.1002/cvde.200606584 13, 351 (2007).
-
(2007)
Chem. Vap. Deposition
, vol.13
, pp. 351
-
-
Stancu, G.D.1
Lang, N.2
Röpcke, J.3
Reinicke, M.4
Steinbach, A.5
Wege, S.6
-
7
-
-
33749007963
-
-
0946-2171 10.1007/s00340-006-2372-1.
-
C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, Appl. Phys. B: Lasers Opt. 0946-2171 10.1007/s00340-006-2372-1 85, 251 (2006).
-
(2006)
Appl. Phys. B: Lasers Opt.
, vol.85
, pp. 251
-
-
Bauer, C.1
Geiser, P.2
Burgmeier, J.3
Holl, G.4
Schade, W.5
-
8
-
-
25144505892
-
-
0946-2171 10.1007/s00340-005-1922-2.
-
M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, Appl. Phys. B: Lasers Opt. 0946-2171 10.1007/s00340-005-1922-2 81, 705 (2005).
-
(2005)
Appl. Phys. B: Lasers Opt.
, vol.81
, pp. 705
-
-
Silva, M.L.1
Sonnenfroh, D.M.2
Rosen, D.I.3
Allen, M.G.4
O'Keefe, A.5
-
9
-
-
0036757470
-
-
0946-2171 10.1007/s00340-002-0991-8.
-
M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, Appl. Phys. B: Lasers Opt. 0946-2171 10.1007/s00340-002-0991-8 75, 367 (2002).
-
(2002)
Appl. Phys. B: Lasers Opt.
, vol.75
, pp. 367
-
-
Todd, M.W.1
Provencal, R.A.2
Owano, T.G.3
Paldus, B.A.4
Kachanov, A.5
Vodopyanov, K.L.6
Hunter, M.7
Coy, S.L.8
Steinfeld, J.I.9
Arnold, J.T.10
-
10
-
-
84919497866
-
-
1.
-
M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res.. 1, 014001 (2007).
-
(2007)
J. Breath Res.
, pp. 014001
-
-
McCurdy, M.R.1
Bakhirkin, Y.2
Wysocki, G.3
Lewicki, R.4
Tittel, F.K.5
-
12
-
-
0000899797
-
-
0034-6748 10.1063/1.1149176.
-
R. Engeln, G. Berden, R. Peeters, and G. Meijer, Rev. Sci. Instrum. 0034-6748 10.1063/1.1149176 69, 3763 (1998).
-
(1998)
Rev. Sci. Instrum.
, vol.69
, pp. 3763
-
-
Engeln, R.1
Berden, G.2
Peeters, R.3
Meijer, G.4
-
14
-
-
0000735887
-
-
0009-2614 10.1016/S0009-2614(98)00785-4.
-
A. O'Keefe, Chem. Phys. Lett. 0009-2614 10.1016/S0009-2614(98)00785-4 293, 331 (1998).
-
(1998)
Chem. Phys. Lett.
, vol.293
, pp. 331
-
-
O'Keefe, A.1
-
19
-
-
0003495286
-
-
edited by K. W. Busch and M. A. Busch (American Chemical Society, Washington, DC).
-
Cavity Ring-Down Spectroscopy: An Ultratrace Absorption Measurement Technique, edited by, K. W. Busch, and, M. A. Busch, (American Chemical Society, Washington, DC, 1999).
-
(1999)
Cavity Ring-Down Spectroscopy: An Ultratrace Absorption Measurement Technique
-
-
-
20
-
-
0000792737
-
-
0009-2614 10.1016/0009-2614(95)00969-B.
-
J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O'Keefe, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(95) 00969-B 245, 273 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.245
, pp. 273
-
-
Scherer, J.J.1
Voelkel, D.2
Rakestraw, D.J.3
Paul, J.B.4
Collier, C.P.5
Saykally, R.J.6
O'Keefe, A.7
-
21
-
-
0031249566
-
-
0021-9606 10.1063/1.474284.
-
J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, J. Chem. Phys. 0021-9606 10.1063/1.474284 107, 6196 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 6196
-
-
Scherer, J.J.1
Aniolek, K.W.2
Cernansky, N.P.3
Rakestraw, D.J.4
-
23
-
-
32044472126
-
-
0021-9606 10.1063/1.2165651.
-
F. Ito, J. Chem. Phys. 0021-9606 10.1063/1.2165651 124, 054309 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 054309
-
-
Ito, F.1
-
25
-
-
11244252069
-
-
1089-5639 10.1021/jp984618v.
-
J. B. Paul, R. A. Provencal, C. Chapo, K. Roth, R. Casaes, and R. J. Saykally, J. Phys. Chem. A 1089-5639 10.1021/jp984618v 103, 2972 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 2972
-
-
Paul, J.B.1
Provencal, R.A.2
Chapo, C.3
Roth, K.4
Casaes, R.5
Saykally, R.J.6
-
26
-
-
0032534403
-
-
0021-9606 10.1063/1.477714.
-
J. B. Paul, R. A. Provencal, C. Chapo, A. Petterson, and R. J. Saykally, J. Chem. Phys. 0021-9606 10.1063/1.477714 109, 10201 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 10201
-
-
Paul, J.B.1
Provencal, R.A.2
Chapo, C.3
Petterson, A.4
Saykally, R.J.5
-
27
-
-
0000199511
-
-
0009-2614 10.1016/S0009-2614(01)00217-2.
-
R. Peeters, G. Berden, A. Olafsson, L. J. J. Laarhoven, and G. Meijer, Chem. Phys. Lett. 0009-2614 10.1016/S0009-2614(01)00217-2 337, 231 (2001).
-
(2001)
Chem. Phys. Lett.
, vol.337
, pp. 231
-
-
Peeters, R.1
Berden, G.2
Olafsson, A.3
Laarhoven, L.J.J.4
Meijer, G.5
-
28
-
-
0001597688
-
-
0146-9592
-
D. Kleine, H. Dahnke, W. Urban, P. Hering, and M. Mürtz, Opt. Lett. 25, 1606 (2000). 0146-9592
-
(2000)
Opt. Lett.
, vol.25
, pp. 1606
-
-
Kleine, D.1
Dahnke, H.2
Urban, W.3
Hering, P.4
Mürtz, M.5
-
29
-
-
25144518792
-
-
0146-9592 10.1364/OL.30.002314.
-
D. Halmer, G. von Basum, P. Hering, and M. Mürtz, Opt. Lett. 0146-9592 10.1364/OL.30.002314 30, 2314 (2005).
-
(2005)
Opt. Lett.
, vol.30
, pp. 2314
-
-
Halmer, D.1
Von Basum, G.2
Hering, P.3
Mürtz, M.4
-
30
-
-
56349137430
-
-
presented at the Frontiers in Low Temperature Plasma Diagnostics IV, Rolduc, The Netherlands, 25-29 March (unpublished).
-
M. M. Hemerik and G. M. W. Kroesen, presented at the Frontiers in Low Temperature Plasma Diagnostics IV, Rolduc, The Netherlands, 25-29 March 2001 (unpublished).
-
(2001)
-
-
Hemerik, M.M.1
Kroesen, G.M.W.2
-
31
-
-
56349093613
-
-
Ph.D. thesis, Eindhoven University of Technology.
-
M. Hemerik, Ph.D. thesis, Eindhoven University of Technology, 2001.
-
(2001)
-
-
Hemerik, M.1
-
32
-
-
4344579354
-
-
0093-3813 10.1109/TPS.2004.826133.
-
J. Remy, M. M. Hemerik, G. M. W. Kroesen, and W. W. Stoffels, IEEE Trans. Plasma Sci. 0093-3813 10.1109/TPS.2004.826133 32, 709 (2004).
-
(2004)
IEEE Trans. Plasma Sci.
, vol.32
, pp. 709
-
-
Remy, J.1
Hemerik, M.M.2
Kroesen, G.M.W.3
Stoffels, W.W.4
-
33
-
-
0028304539
-
-
0036-8075 10.1126/science.264.5158.553.
-
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Cho, Science 0036-8075 10.1126/science.264.5158.553 264, 553 (1994).
-
(1994)
Science
, vol.264
, pp. 553
-
-
Faist, J.1
Capasso, F.2
Sivco, D.L.3
Sirtori, C.4
Hutchinson, A.L.5
Cho, A.6
-
34
-
-
2542477092
-
-
0003-6951 10.1063/1.1738184.
-
R. Q. Yang, C. J. Hill, B. H. Yang, C. M. Wong, R. E. Muller, and P. M. Echternach, Appl. Phys. Lett. 0003-6951 10.1063/1.1738184 84, 3699 (2004).
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 3699
-
-
Yang, R.Q.1
Hill, C.J.2
Yang, B.H.3
Wong, C.M.4
Muller, R.E.5
Echternach, P.M.6
-
36
-
-
0037059498
-
-
0036-8075 10.1126/science.1066408.
-
M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 0036-8075 10.1126/science.1066408 295, 301 (2002).
-
(2002)
Science
, vol.295
, pp. 301
-
-
Beck, M.1
Hofstetter, D.2
Aellen, T.3
Faist, J.4
Oesterle, U.5
Ilegems, M.6
Gini, E.7
Melchior, H.8
-
37
-
-
0242269963
-
-
0146-9592 10.1364/OL.28.002052.
-
C. Roller, A. A. Kosterev, F. K. Tittel, K. Uehara, C. Gmachl, and D. L. Sivco, Opt. Lett. 0146-9592 10.1364/OL.28.002052 28, 2052 (2003).
-
(2003)
Opt. Lett.
, vol.28
, pp. 2052
-
-
Roller, C.1
Kosterev, A.A.2
Tittel, F.K.3
Uehara, K.4
Gmachl, C.5
Sivco, D.L.6
-
38
-
-
33749000102
-
-
0146-9592 10.1364/OL.31.002012.
-
D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, Opt. Lett. 0146-9592 10.1364/OL.31.002012 31, 2012 (2006).
-
(2006)
Opt. Lett.
, vol.31
, pp. 2012
-
-
Nelson, D.D.1
McManus, J.B.2
Herndon, S.C.3
Shorter, J.H.4
Zahniser, M.S.5
Blaser, S.6
Hvozdara, L.7
Muller, A.8
Giovannini, M.9
Faist, J.10
-
39
-
-
0036757469
-
-
0946-2171 10.1007/s00340-002-0979-4.
-
D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, Appl. Phys. B: Lasers Opt. 0946-2171 10.1007/s00340-002-0979-4 75, 343 (2002).
-
(2002)
Appl. Phys. B: Lasers Opt.
, vol.75
, pp. 343
-
-
Nelson, D.D.1
Shorter, J.H.2
McManus, J.B.3
Zahniser, M.S.4
-
40
-
-
34250333048
-
-
1094-4087 10.1364/OE.15.007357.
-
R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, Opt. Express 1094-4087 10.1364/OE.15.007357 15, 7357 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 7357
-
-
Lewicki, R.1
Wysocki, G.2
Kosterev, A.A.3
Tittel, F.K.4
-
41
-
-
34548098331
-
-
0946-2171
-
A. Grossel, V. Zeninari, B. Parvitte, L. Joly, and D. Courtois, Appl. Phys. B: Lasers Opt. 88, 483 (2007). 0946-2171
-
(2007)
Appl. Phys. B: Lasers Opt.
, vol.88
, pp. 483
-
-
Grossel, A.1
Zeninari, V.2
Parvitte, B.3
Joly, L.4
Courtois, D.5
-
43
-
-
0034692071
-
-
0003-6935
-
A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 39, 4425 (2000). 0003-6935
-
(2000)
Appl. Opt.
, vol.39
, pp. 4425
-
-
Kosterev, A.A.1
Curl, R.F.2
Tittel, F.K.3
Gmachl, C.4
Capasso, F.5
Sivco, D.L.6
Baillargeon, J.N.7
Hutchinson, A.L.8
Cho, A.Y.9
-
44
-
-
37449012170
-
-
1350-4495 10.1016/j.infrared.2007.05.006.
-
B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, Infrared Phys. Technol. 1350-4495 10.1016/j.infrared.2007.05.006 51, 198 (2008).
-
(2008)
Infrared Phys. Technol.
, vol.51
, pp. 198
-
-
Tuzson, B.1
Zeeman, M.J.2
Zahniser, M.S.3
Emmenegger, L.4
-
46
-
-
0000924702
-
-
0146-9592
-
B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 25, 666 (2000). 0146-9592
-
(2000)
Opt. Lett.
, vol.25
, pp. 666
-
-
Paldus, B.A.1
Harb, C.C.2
Spence, T.G.3
Zare, R.N.4
Gmachl, C.5
Capasso, F.6
Sivco, D.L.7
Baillargeon, J.N.8
Hutchinson, A.L.9
Cho, A.Y.10
-
47
-
-
9644300938
-
-
0584-8539
-
M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, Spectrochim. Acta, Part A 60, 3457 (2004). 0584-8539
-
(2004)
Spectrochim. Acta, Part A
, vol.60
, pp. 3457
-
-
Taubman, M.S.1
Myers, T.L.2
Cannon, B.D.3
Williams, R.M.4
-
48
-
-
33846885425
-
-
0003-6935 10.1364/AO.45.009230.
-
J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, Appl. Opt. 0003-6935 10.1364/AO.45.009230 45, 9230 (2006).
-
(2006)
Appl. Opt.
, vol.45
, pp. 9230
-
-
Manne, J.1
Sukhorukov, O.2
Jäger, W.3
Tulip, J.4
-
49
-
-
33646735765
-
-
0277-786X
-
O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jäger, Proc. SPIE 6127, 61270A (2006). 0277-786X
-
(2006)
Proc. SPIE
, vol.6127
-
-
Sukhorukov, O.1
Lytkine, A.2
Manne, J.3
Tulip, J.4
Jäger, W.5
-
50
-
-
0034741096
-
-
0946-2171
-
L. Menzel, A. A. Kosterev, R. F. Curl, R. F. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargon, A. L. Hutchinson, A. Y. Cho, and W. Urban, Appl. Phys. B: Lasers Opt. 72, 859 (2001). 0946-2171
-
(2001)
Appl. Phys. B: Lasers Opt.
, vol.72
, pp. 859
-
-
Menzel, L.1
Kosterev, A.A.2
Curl, R.F.3
Tittel, R.F.4
Gmachl, C.5
Capasso, F.6
Sivco, D.L.7
Baillargon, J.N.8
Hutchinson, A.L.9
Cho, A.Y.10
Urban, W.11
-
51
-
-
0035776838
-
-
0277-786X 10.1117/12.455722.
-
J. B. Paul, J. J. Scherer, A. O'Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, and A. Y. Cho, Proc. SPIE 0277-786X 10.1117/12.455722 4577, 1 (2002).
-
(2002)
Proc. SPIE
, vol.4577
, pp. 1
-
-
Paul, J.B.1
Scherer, J.J.2
O'Keefe, A.3
Lapson, L.4
Anderson, J.G.5
Gmachl, C.6
Capasso, F.7
Cho, A.Y.8
-
52
-
-
2342584132
-
-
0003-6935 10.1364/AO.43.002257.
-
Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, Appl. Opt. 0003-6935 10.1364/AO.43.002257 43, 2257 (2004).
-
(2004)
Appl. Opt.
, vol.43
, pp. 2257
-
-
Bakhirkin, Y.A.1
Kosterev, A.A.2
Roller, C.3
Curl, R.F.4
Tittel, F.K.5
-
53
-
-
0001045871
-
-
0003-6935 10.1364/AO.40.005522.
-
A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 0003-6935 10.1364/AO.40.005522 40, 5522 (2001).
-
(2001)
Appl. Opt.
, vol.40
, pp. 5522
-
-
Kosterev, A.A.1
Malinovsky, A.L.2
Tittel, F.K.3
Gmachl, C.4
Capasso, F.5
Sivco, D.L.6
Baillargeon, J.N.7
Hutchinson, A.L.8
Cho, A.Y.9
-
54
-
-
29044437356
-
-
0946-2171 10.1007/s00340-005-2058-0.
-
Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, L. Hvodzdara, M. Giovannini, and J. Faist, Appl. Phys. B: Lasers Opt. 0946-2171 10.1007/s00340-005-2058-0 82, 149 (2006).
-
(2006)
Appl. Phys. B: Lasers Opt.
, vol.82
, pp. 149
-
-
Bakhirkin, Y.A.1
Kosterev, A.A.2
Curl, R.F.3
Tittel, F.K.4
Hvodzdara, L.5
Giovannini, M.6
Faist, J.7
-
56
-
-
34249038563
-
-
F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, Rev. Laser Eng. 34, 275 (2006).
-
(2006)
Rev. Laser Eng.
, vol.34
, pp. 275
-
-
Tittel, F.K.1
Bakhirkin, Y.2
Kosterev, A.A.3
Wysocki, G.4
-
58
-
-
33749333402
-
-
0946-2171
-
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, Appl. Phys. B: Lasers Opt. 85, 391 (2006). 0946-2171
-
(2006)
Appl. Phys. B: Lasers Opt.
, vol.85
, pp. 391
-
-
Miller, J.H.1
Bakhirkin, Y.A.2
Ajtai, T.3
Tittel, F.K.4
Hill, C.J.5
Yang, R.Q.6
-
59
-
-
28444461842
-
-
0260-1826 10.1039/b408909j.
-
M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 0260-1826 10.1039/b408909j 101, 100 (2005).
-
(2005)
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
, vol.101
, pp. 100
-
-
Mazurenka, M.1
Orr-Ewing, A.J.2
Peverall, R.3
Ritchie, G.A.D.4
-
60
-
-
36449003939
-
-
0021-9606 10.1063/1.468647.
-
P. Zalicki and R. N. Zare, J. Chem. Phys. 0021-9606 10.1063/1.468647 102, 2708 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 2708
-
-
Zalicki, P.1
Zare, R.N.2
-
61
-
-
20144380080
-
-
0022-4073 10.1016/j.jqsrt.2004.10.008.
-
L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. -M. Flaud, R. R. Gamache, A. Goldman, J. -M. Hartmann, K. W. Jucks, A. G. Maki, J. -Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 0022-4073 10.1016/j.jqsrt.2004.10.008 96, 139 (2005).
-
(2005)
J. Quant. Spectrosc. Radiat. Transf.
, vol.96
, pp. 139
-
-
Rothman, L.S.1
Jacquemart, D.2
Barbe, A.3
Benner, D.C.4
Birk, M.5
Brown, L.R.6
Carleer, M.R.7
Chackerian Jr., C.8
Chance, K.9
Coudert, L.H.10
Dana, V.11
Devi, V.M.12
Flaud, J.-M.13
Gamache, R.R.14
Goldman, A.15
Hartmann, J.-M.16
Jucks, K.W.17
Maki, A.G.18
Mandin, J.-Y.19
Massie, S.T.20
Orphal, J.21
Perrin, A.22
Rinsland, C.P.23
Smith, M.A.H.24
Tennyson, J.25
Tolchenov, R.N.26
Toth, R.A.27
Vander Auwera, J.28
Varanasi, P.29
Wagner, G.30
more..
-
62
-
-
56349171013
-
-
The MDND was calculated with 50 ppb at atmospheric pressure. The NEA was estimated via the minimum round triloss for 16 ppb standard deviation (Fig. 7 in Ref.) and converted into kmin. Equation for 20 s averaging (without 2) yields the NEA.
-
The MDND was calculated with 50 ppb at atmospheric pressure. The NEA was estimated via the minimum round trip loss for 16 ppb standard deviation (Fig. 7 in Ref.) and converted into kmin. Equation for 20 s averaging (without 2) yields the NEA.
-
-
-
-
63
-
-
56349136148
-
-
Figure 8 in Ref. implies a minimum detectable absorption of 3× 10-3 for 1500 m in 4 s. The NEA follows from Eqs. and the MDND from 0.7 ppb at 100 Torr or 0.8 ppb at 70 Torr. Those minimum concentrations are given as rms noise from approximately ten different 4 s scans and are therefore smaller than a minimum absorption of 3× 10-3 would suggest.
-
Figure 8 in Ref. implies a minimum detectable absorption of 3× 10-3 for 1500 m in 4 s. The NEA follows from Eqs. and the MDND from 0.7 ppb at 100 Torr or 0.8 ppb at 70 Torr. Those minimum concentrations are given as rms noise from approximately ten different 4 s scans and are therefore smaller than a minimum absorption of 3× 10-3 would suggest.
-
-
-
-
64
-
-
56349123537
-
-
Figure 3 in Ref. implies an absorption of 0.0005 for 13 ppb NO (50 Torr) for a SNR=5, i.e., the minimum detectable absorption is ∼ 10-4. For N=100 scans the SNR was improved by N1/2 while for 10 000 averages an additional factor 2.5 is achieved, i.e. a factor 25 in total compared to a single scan. The NEA follows from Eqs. (without 2 because Leff =100 m was not calibrated).
-
Figure 3 in Ref. implies an absorption of 0.0005 for 13 ppb NO (50 Torr) for a SNR=5, i.e., the minimum detectable absorption is ∼ 10-4. For N=100 scans the SNR was improved by N1/2 while for 10 000 averages an additional factor 2.5 is achieved, i.e. a factor 25 in total compared to a single scan. The NEA follows from Eqs. (without 2 because Leff =100 m was not calibrated).
-
-
-
-
65
-
-
56349149270
-
-
The Allan variance minimum of 0.03 ppb after 30 s corresponds to 3× 10-6 absorbance noise and kmin =1.5× 10-10 cm-1, respectively (Ref.). Since the short term noise (1 s) is 0.06 ppb the corresponding values were also scaled by a factor 2, i.e. the NEA is ∼3× 10-10 cm-1 Hz-1/2. The MDND follows from 0.03 ppb at 20 Torr.
-
The Allan variance minimum of 0.03 ppb after 30 s corresponds to 3× 10-6 absorbance noise and kmin =1.5× 10-10 cm-1, respectively (Ref.). Since the short term noise (1 s) is 0.06 ppb the corresponding values were also scaled by a factor 2, i.e. the NEA is ∼3× 10-10 cm-1 Hz-1/2. The MDND follows from 0.03 ppb at 20 Torr.
-
-
-
-
66
-
-
27744488831
-
-
0306-0012 10.1039/b400914m.
-
G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, Chem. Soc. Rev. 0306-0012 10.1039/b400914m 34, 921 (2005).
-
(2005)
Chem. Soc. Rev.
, vol.34
, pp. 921
-
-
Duxbury, G.1
Langford, N.2
McCulloch, M.T.3
Wright, S.4
-
68
-
-
56349112124
-
-
ESPERE Climate Encyclopaedia.
-
E. Uherek and R. Sander, ESPERE Climate Encyclopaedia, 2006 (http://www.espere.net/).
-
(2006)
-
-
Uherek, E.1
Sander, R.2
-
69
-
-
56349161348
-
-
Combining Eqs. without integration yields L eff -1 ln (I0 /I) =k=nSf (- 0), where f describes the line profile. In the case of low pressures (<5 mbar) f can be approximated by a Doppler profile and k or f can be analytically expressed at 0, i.e. L eff -1 ln [I0 (0) /I (0)] =k (0) =nS×2 (ln 2/π) 1/2 /Δ line, where Δ line is the FWHM and thus nS∼ln (I0 /I) at the maximum.
-
Combining Eqs. without integration yields L eff -1 ln (I0 /I) =k=nSf (- 0), where f describes the line profile. In the case of low pressures (<5 mbar) f can be approximated by a Doppler profile and k or f can be analytically expressed at 0, i.e. L eff -1 ln [I0 (0) /I (0)] =k (0) =nS×2 (ln 2/π) 1/2 /Δ line, where Δ line is the FWHM and thus nS∼ln (I0 /I) at the maximum.
-
-
-
-
70
-
-
56349116489
-
-
Leff was calculated from τ0 =3.5 μs. After 8 s the relative error of τ was 4.7× 10-3; Eqs. yield the NEA (without 2 because R was not calibrated). The MDND follows from the detection limit of 0.7 ppb at 60 Torr (Ref.).
-
Leff was calculated from τ0 =3.5 μs. After 8 s the relative error of τ was 4.7× 10-3; Eqs. yield the NEA (without 2 because R was not calibrated). The MDND follows from the detection limit of 0.7 ppb at 60 Torr (Ref.).
-
-
-
-
71
-
-
56349124001
-
-
After 600 scans at 600 Hz the standard deviation was 10-4. The NEA follows from Eqs. and the MDND from 0.25 ppb detection limit at STP (Ref.). Leff was estimated from τ0 =0.93 μs.
-
After 600 scans at 600 Hz the standard deviation was 10-4. The NEA follows from Eqs. and the MDND from 0.25 ppb detection limit at STP (Ref.). Leff was estimated from τ0 =0.93 μs.
-
-
-
-
72
-
-
56349146674
-
-
The MDND was calculated with 16 ppb at 30 Torr (Ref.). A minimum detectable absorption of 0.01 with Leff =670 m in 200 s yields the NEA with Eqs..
-
The MDND was calculated with 16 ppb at 30 Torr (Ref.). A minimum detectable absorption of 0.01 with Leff =670 m in 200 s yields the NEA with Eqs..
-
-
-
-
73
-
-
56349127124
-
-
Leff was calculated from Reff =99.4% and 50 cm base length. The MDND follows from 100 ppb at 50 Torr whereas the NEA was calculated with 0.15% standard deviation in absorption for 3.3 s averaging and Leff =83.3 m (Ref.).
-
Leff was calculated from Reff =99.4% and 50 cm base length. The MDND follows from 100 ppb at 50 Torr whereas the NEA was calculated with 0.15% standard deviation in absorption for 3.3 s averaging and Leff =83.3 m (Ref.).
-
-
-
-
74
-
-
56349103844
-
-
Figure 10 in Ref. implies a minimum detectable absorption of 3× 10-4 for 75 m in 15 s. The NEA follows from Eqs. and the MDND from 10 ppb at 100 Torr.
-
Figure 10 in Ref. implies a minimum detectable absorption of 3× 10-4 for 75 m in 15 s. The NEA follows from Eqs. and the MDND from 10 ppb at 100 Torr.
-
-
-
-
75
-
-
56349125418
-
-
Figure 4 in Ref. implies a minimum detectable absorption of 6× 10-3 for 700 m in 1 s. The NEA follows from Eqs. and the MDND from 3.2 ppb at 200 Torr.
-
Figure 4 in Ref. implies a minimum detectable absorption of 6× 10-3 for 700 m in 1 s. The NEA follows from Eqs. and the MDND from 3.2 ppb at 200 Torr.
-
-
-
-
76
-
-
56349091650
-
-
Figure 5 in Ref. implies a minimum detectable absorption of 6× 10-4 for 500 m in 4 s. The NEA follows from Eqs. and the MDND from 3.6 ppb at 100 Torr.
-
Figure 5 in Ref. implies a minimum detectable absorption of 6× 10-4 for 500 m in 4 s. The NEA follows from Eqs. and the MDND from 3.6 ppb at 100 Torr.
-
-
-
-
77
-
-
56349161846
-
-
With the given gain factor 6760 Reff is estimated to be 99.9852%. Consequently Leff is 5560 m for a base length of 82.3 cm. The MDND follows from the 3 ppb detection limit at 30 Torr (Ref.).
-
With the given gain factor 6760 Reff is estimated to be 99.9852%. Consequently Leff is 5560 m for a base length of 82.3 cm. The MDND follows from the 3 ppb detection limit at 30 Torr (Ref.).
-
-
-
-
78
-
-
56349131531
-
-
The MDND was calculated from the Allan variance minimum of 0.12 ppm at 14 Torr after 240 s corresponding to a peak absorbance precision of 6× 10-5. This value was scaled with ∼10 since it does not scale with the square root of averages (Ref.) to determine the short term deviation (1 s) yielding 1.1 ppm. The NEA follows from Eqs. for 56 m path length.
-
The MDND was calculated from the Allan variance minimum of 0.12 ppm at 14 Torr after 240 s corresponding to a peak absorbance precision of 6× 10-5. This value was scaled with ∼10 since it does not scale with the square root of averages (Ref.) to determine the short term deviation (1 s) yielding 1.1 ppm. The NEA follows from Eqs. for 56 m path length.
-
-
-
-
79
-
-
56349127575
-
-
The MDND was calculated for the smallest pressure given in Ref. (20 Torr) and 2.5 ppb CH4 and 1.0 ppb N2 O, respectively. The NEA follows from Eqs. (without 2) for 3.5× 10-5 minimum peak absorbance, 30 s averaging, and 100 m path length.
-
The MDND was calculated for the smallest pressure given in Ref. (20 Torr) and 2.5 ppb CH4 and 1.0 ppb N2 O, respectively. The NEA follows from Eqs. (without 2) for 3.5× 10-5 minimum peak absorbance, 30 s averaging, and 100 m path length.
-
-
-
-
80
-
-
56349169157
-
-
The NEA follows from Eqs. for 1.4× 10-4 absorbance precision at 1 s sampling rate. For N2 O this yields a MDND calculated from 3 ppb at 60 Torr. For CH4 the MDND was estimated from the Allan variance after 200 s: 0.7 ppb at 50 Torr (Ref.).
-
The NEA follows from Eqs. for 1.4× 10-4 absorbance precision at 1 s sampling rate. For N2 O this yields a MDND calculated from 3 ppb at 60 Torr. For CH4 the MDND was estimated from the Allan variance after 200 s: 0.7 ppb at 50 Torr (Ref.).
-
-
-
-
81
-
-
56349132948
-
-
Figure 5 in Ref. implies a minimum absorbance of 4× 10-5 for a 1 Hz sampling rate at 56 m path length which yields the (short term) NEA from Eqs. (without 2). The MDND follows from 35.5 Torr (Fig.) and the Allan variance minimum of 0.06 ppb.
-
Figure 5 in Ref. implies a minimum absorbance of 4× 10-5 for a 1 Hz sampling rate at 56 m path length which yields the (short term) NEA from Eqs. (without 2). The MDND follows from 35.5 Torr (Fig.) and the Allan variance minimum of 0.06 ppb.
-
-
-
-
82
-
-
56349094961
-
-
The MDND was calculated for 48 Torr and 1 s averaging time (Fig.) by means of the given NEAs, i.e., 0.12 and 0.26 ppb for the LN and TE cooled detectors, respectively (Ref.).
-
The MDND was calculated for 48 Torr and 1 s averaging time (Fig.) by means of the given NEAs, i.e., 0.12 and 0.26 ppb for the LN and TE cooled detectors, respectively (Ref.).
-
-
-
-
83
-
-
56349164017
-
-
The MDNDs follow from 34 and 14 ppb for CH4 and N2 O at atmospheric pressure, respectively. The NEA was estimated from the noise of 0.4 μV and the calibration factor of 715 V/W cm-1 scaled with the output power of 8 mW (Ref.).
-
The MDNDs follow from 34 and 14 ppb for CH4 and N2 O at atmospheric pressure, respectively. The NEA was estimated from the noise of 0.4 μV and the calibration factor of 715 V/W cm-1 scaled with the output power of 8 mW (Ref.).
-
-
-
-
84
-
-
56349152906
-
-
The MDND follows from 4 ppb at 50 Torr for a 3 s lock-in time constant. The normalized NEA was scaled with the output power of 19 mW (Ref.).
-
The MDND follows from 4 ppb at 50 Torr for a 3 s lock-in time constant. The normalized NEA was scaled with the output power of 19 mW (Ref.).
-
-
-
-
85
-
-
56349124926
-
-
The MDND was calculated with 0.1 ppb at 770 Torr after 100 s (Allan variance plot). The normalized NEA was scaled with the output power of 6.6 mW (Ref.).
-
The MDND was calculated with 0.1 ppb at 770 Torr after 100 s (Allan variance plot). The normalized NEA was scaled with the output power of 6.6 mW (Ref.).
-
-
-
|