메뉴 건너뛰기




Volumn 78, Issue 18, 2008, Pages

Normal and anomalous solitons in the theory of dynamical Cooper pairing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 56349083805     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.184507     Document Type: Article
Times cited : (51)

References (54)
  • 8
    • 29744453291 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.72.121102
    • A. Mitra and A. J. Millis, Phys. Rev. B 72, 121102 (R) (2005). 10.1103/PhysRevB.72.121102
    • (2005) Phys. Rev. B , vol.72 , pp. 121102
    • Mitra, A.1    Millis, A.J.2
  • 9
    • 33744804835 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.216802
    • P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 (2006). 10.1103/PhysRevLett.96.216802
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 216802
    • Mehta, P.1    Andrei, N.2
  • 11
    • 33749990876 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.97.156403
    • M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006). 10.1103/PhysRevLett. 97.156403
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 156403
    • Cazalilla, M.A.1
  • 14
    • 3543117232 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.92.256803
    • K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004). 10.1103/PhysRevLett.92.256803
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 256803
    • Ono, K.1    Tarucha, S.2
  • 21
    • 0037437978 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.67.033301
    • R. de Sousa and S. Das Sarma, Phys. Rev. B 67, 033301 (2003). 10.1103/PhysRevB.67.033301
    • (2003) Phys. Rev. B , vol.67 , pp. 033301
    • De Sousa, R.1    Das Sarma, S.2
  • 26
    • 56349126897 scopus 로고
    • Ph.D. thesis, Institute for Low Temperature Physics and Engineering
    • V. S. Shumeiko, Ph.D. thesis, Institute for Low Temperature Physics and Engineering, 1990.
    • (1990)
    • Shumeiko, V.S.1
  • 32
    • 28644437040 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.71.134514
    • G. L. Warner and A. J. Leggett, Phys. Rev. B 71, 134514 (2005). 10.1103/PhysRevB.71.134514
    • (2005) Phys. Rev. B , vol.71 , pp. 134514
    • Warner, G.L.1    Leggett, A.J.2
  • 36
    • 33745143889 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.230404
    • E. A. Yuzbashyan and M. Dzero, Phys. Rev. Lett. 96, 230404 (2006). 10.1103/PhysRevLett.96.230404
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 230404
    • Yuzbashyan, E.A.1    Dzero, M.2
  • 40
    • 36149026335 scopus 로고
    • 10.1103/PhysRev.112.1900
    • P. W. Anderson, Phys. Rev. 112, 1900 (1958). 10.1103/PhysRev.112.1900
    • (1958) Phys. Rev. , vol.112 , pp. 1900
    • Anderson, P.W.1
  • 41
    • 36049058276 scopus 로고
    • 10.1103/PhysRev.152.416
    • E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966). 10.1103/PhysRev.152.416
    • (1966) Phys. Rev. , vol.152 , pp. 416
    • Abrahams, E.1    Tsuneto, T.2
  • 43
  • 44
    • 33646662704 scopus 로고
    • 10.1016/0022-3697(59)90036-8
    • P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959). 10.1016/0022- 3697(59)90036-8
    • (1959) J. Phys. Chem. Solids , vol.11 , pp. 26
    • Anderson, P.W.1
  • 46
    • 0142053652 scopus 로고
    • 10.1007/BF01840429;
    • E. K. Sklyanin, J. Sov. Math. 47, 2473 (1989) 10.1007/BF01840429
    • (1989) J. Sov. Math. , vol.47 , pp. 2473
    • Sklyanin, E.K.1
  • 48
  • 49
    • 56349111443 scopus 로고    scopus 로고
    • Indeed, the numerators of Lx (u), Ly (u), and Lz (u) are polynomials in u with real coefficients. Let c be a real (double) zero of L2 (u) and let ax, ay, and az be the remnants from the division of these polynomials by (u-c). Since c is real ax,y,z are also real. It follows from Lx2 (u) + Ly2 (u) + Lz2 (u) = L2 (u) that ax2 + ay2 + az2 =0, i.e., ax = ay = az =0.
    • Indeed, the numerators of Lx (u), Ly (u), and Lz (u) are polynomials in u with real coefficients. Let c be a real (double) zero of L2 (u) and let ax, ay, and az be the remnants from the division of these polynomials by (u-c). Since c is real ax,y,z are also real. It follows from Lx2 (u) + Ly2 (u) + Lz2 (u) = L2 (u) that ax2 + ay2 + az2 =0, i.e., ax = ay = az =0.
  • 50
    • 56349143764 scopus 로고    scopus 로고
    • Note however that since L2 (u) is conserved by the evolution, the roots of Q2n (u) are constants of motion.
    • Note however that since L2 (u) is conserved by the evolution, the roots of Q2n (u) are constants of motion.
  • 53
    • 56349166608 scopus 로고    scopus 로고
    • The frozen separation variables are the solutions of Ls (u) =0, where Ls (u) is given by Eq. 38. Particle-hole symmetry implies Ls (u) =- Ls (-u) and therefore ∑ j=3 n-1 uj =0.
    • The frozen separation variables are the solutions of Ls (u) =0, where Ls (u) is given by Eq. 38. Particle-hole symmetry implies Ls (u) =- Ls (-u) and therefore ∑ j=3 n-1 uj =0.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.