메뉴 건너뛰기




Volumn , Issue , 2007, Pages 388-392

Abnormalities and fraud electric meter detection using hybrid support vector machine & genetic algorithm

Author keywords

Dual lagrangian optimization; Dynamic crossover point; Genetic algorithm; Pre populated database; Support vector machine

Indexed keywords

ALGORITHMS; COMPUTER SCIENCE; COMPUTERS; DATABASE SYSTEMS; DIESEL ENGINES; GENETIC ALGORITHMS; IMAGE RETRIEVAL; INTELLIGENT SYSTEMS; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; VECTORS;

EID: 56149083812     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (8)
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Jan.-March
    • Chapelle O., Vapnik V., Bousquet O. and Mukherjee S., Choosing multiple parameters for support vector machines, Machine Learning, Vol. 46, no.1-3, pp.131-159, Jan.-March 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0022559425 scopus 로고
    • Optimization of Control Parameters for Genetic Algorithms
    • Jan./Feb
    • Grefenstette, J.J. Optimization of Control Parameters for Genetic Algorithms, IEEE Trans. Systems, Man, and Cybernetics, Vol. SMC-16, No. 1, Jan./Feb. 1986, pp. 122-128.
    • (1986) IEEE Trans. Systems, Man, and Cybernetics , vol.SMC-16 , Issue.1 , pp. 122-128
    • Grefenstette, J.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.