메뉴 건너뛰기




Volumn 8, Issue 1, 2008, Pages 41-66

Nonparametric Bayesian modelling for item response

Author keywords

Dirichlet process; Item response theory; Latent trait distribution; Monotone item response curve

Indexed keywords


EID: 56049088012     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X0700800104     Document Type: Article
Times cited : (32)

References (26)
  • 1
    • 0001248506 scopus 로고
    • Bayesian estimation of normal ogive item response curves using Gibbs sampling
    • Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-69.
    • (1992) Journal of Educational Statistics , vol.17 , pp. 251-269
    • Albert, J.H.1
  • 4
    • 0000904732 scopus 로고    scopus 로고
    • A semiparametric Bayesian model for randomised block designs
    • Bush CA and MacEachern SM (1996) A semiparametric Bayesian model for randomised block designs. Biometrika, 83, 275-85.
    • (1996) Biometrika , vol.83 , pp. 275-285
    • Bush, C.A.1    MacEachern, S.M.2
  • 8
    • 0035536710 scopus 로고    scopus 로고
    • Nonparametric item response function estimation for assessing parametric model fit
    • Douglas J and Cohen A (2001) Nonparametric item response function estimation for assessing parametric model fit. Applied Psychological Measurement, 25, 234-43.
    • (2001) Applied Psychological Measurement , vol.25 , pp. 234-243
    • Douglas, J.1    Cohen, A.2
  • 9
    • 33645034929 scopus 로고    scopus 로고
    • Case and covariate influence: Implications for model assessment
    • PhD dissertation, The Ohio State University
    • Duncan KA (2004) Case and covariate influence:iMplications for model assessment. PhD dissertation, The Ohio State University.
    • (2004)
    • Duncan, K.A.1
  • 11
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209-30.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 12
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR and Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-48.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 13
    • 26844562509 scopus 로고    scopus 로고
    • Nonparametric estimation of convex models via mixtures
    • Hoff PD (2003) Nonparametric estimation of convex models via mixtures. The Annals of Statistics, 31, 174-200.
    • (2003) The Annals of Statistics , vol.31 , pp. 174-200
    • Hoff, P.D.1
  • 14
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • Jain S and Neal RM (2004) A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13, 158-82.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , pp. 158-182
    • Jain, S.1    Neal, R.M.2
  • 15
    • 1842545720 scopus 로고    scopus 로고
    • Computational methods for mixture of Dirichlet process models
    • In D Dey, P Mueller and D Sinha eds New York: Springer
    • MacEachern SN (1998) Computational methods for mixtureof Dirichlet process models. In D Dey, P Mueller and D Sinha eds, Practical nonparametric and semiparametric Bayesian statistics, pp. 23-44. New York: Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 23-44
    • MacEachern, S.N.1
  • 16
    • 56049112069 scopus 로고
    • BILOG: Item analysis and test scoring with binary logistic models
    • Mislevy RJ and Bock RD (1982) BILOG: Item analysis and test scoring with binary logistic models. Scientific Software.
    • (1982) Scientific Software
    • Mislevy, R.J.1    Bock, R.D.2
  • 18
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov chain Monte Carlo methods for item response models
    • Patz RJ and Junker BW (1999) A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-78.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 146-178
    • Patz, R.J.1    Junker, B.W.2
  • 20
    • 33645019420 scopus 로고    scopus 로고
    • Nonparametric Bayesian models for item response data
    • PhD dissertation, The Ohio State University
    • Qin L (1998) Nonparametric Bayesian models for item response data. PhD dissertation, The Ohio State University.
    • (1998)
    • Qin, L.1
  • 21
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team R Foundation forStatistical Computing, Vienna, Austria. URL
    • R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation forStatistical Computing, Vienna, Austria. URL http://www.R-project.org.
    • (2006) R: A Language and Environment For Statistical Computing
  • 22
    • 0000025035 scopus 로고
    • Kernel smoothing approaches to nonparametric item characteristic curve estimation
    • Ramsay JO (1991) Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-30.
    • (1991) Psychometrika , vol.56 , pp. 611-630
    • Ramsay, J.O.1
  • 23
    • 0003674109 scopus 로고
    • Medical Research Council Biostatistics Unit, Institute of PublicHealth, Cambridge University. Technical Report
    • Spiegelhalter DJ, Thomas A, Best N and Gilks WR (1995) BUGS examples, Volume 1. Technical report, Medical Research Council Biostatistics Unit, Institute of PublicHealth, Cambridge University.
    • (1995) BUGS Examples , vol.1
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.3    Gilks, W.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.