메뉴 건너뛰기




Volumn 29, Issue 4, 2009, Pages 712-722

An isolation enhanced PCA method with expert-based multivariate decoupling for sensor FDD in air-conditioning systems

Author keywords

Air handling process; Fault detection and diagnosis; Multivariate decoupling; Principle component analysis; Sensor fault

Indexed keywords

AIR CONDITIONING; ELECTRIC FAULT CURRENTS; FREQUENCY DIVISION MULTIPLEXING; NEURAL NETWORKS; ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING; PRINCIPAL COMPONENT ANALYSIS; SENSORS; VECTORS;

EID: 56049083538     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2008.03.046     Document Type: Article
Times cited : (75)

References (29)
  • 3
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.E., and McAvoy T.J. Identification of faulty sensors using principal component analysis. AIChE Journal 104 1 (1996) 2797-2812
    • (1996) AIChE Journal , vol.104 , Issue.1 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.E.3    McAvoy, T.J.4
  • 4
    • 0032049479 scopus 로고    scopus 로고
    • Joint diagnosis of process and sensor faults using principal component analysis
    • Dunia R., and Qin S.J. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice 6 (1998) 457-469
    • (1998) Control Engineering Practice , vol.6 , pp. 457-469
    • Dunia, R.1    Qin, S.J.2
  • 5
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variant analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., and Richard D.B. Fault detection in industrial processes using canonical variant analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 21 1 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.21 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Richard, D.B.3
  • 6
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.H., et al. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 60 1 (2005) 279-288
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.H.1
  • 8
    • 0034651054 scopus 로고    scopus 로고
    • Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA
    • Tsung F. Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA. International Journal of Production Research 38 3 (2000) 625-637
    • (2000) International Journal of Production Research , vol.38 , Issue.3 , pp. 625-637
    • Tsung, F.1
  • 9
    • 0036209691 scopus 로고    scopus 로고
    • Adaptive multiscale principal components analysis for online monitoring of wastewater treatment
    • Lennox J., and Rosen C. Adaptive multiscale principal components analysis for online monitoring of wastewater treatment. Water Science and Technology 45 4-5 (2002) 227-235
    • (2002) Water Science and Technology , vol.45 , Issue.4-5 , pp. 227-235
    • Lennox, J.1    Rosen, C.2
  • 10
    • 0034770510 scopus 로고    scopus 로고
    • Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis
    • Kaistha N., and Upadhyaya B.R. Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis. Nuclear Technology 136 2 (2001) 221-230
    • (2001) Nuclear Technology , vol.136 , Issue.2 , pp. 221-230
    • Kaistha, N.1    Upadhyaya, B.R.2
  • 11
    • 0348230735 scopus 로고    scopus 로고
    • Detection and diagnosis of AHU sensor faults using principal component analysis method
    • Wang S.W., and Xiao F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy and Buildings 36 (2004) 147-160
    • (2004) Energy and Buildings , vol.36 , pp. 147-160
    • Wang, S.W.1    Xiao, F.2
  • 12
    • 33744524057 scopus 로고    scopus 로고
    • A diagnostic tool for online sensor health monitoring in air-conditioning systems
    • Xiao F., Wang S.W., and Zhang J.P. A diagnostic tool for online sensor health monitoring in air-conditioning systems. Automation in Construction 15 (2006) 489-503
    • (2006) Automation in Construction , vol.15 , pp. 489-503
    • Xiao, F.1    Wang, S.W.2    Zhang, J.P.3
  • 13
    • 0344980778 scopus 로고    scopus 로고
    • Sensor validation and reconstruction for building central chilling systems based on principal component analysis
    • Wang S.W., and Chen Y.M. Sensor validation and reconstruction for building central chilling systems based on principal component analysis. Energy Conservation and Management 45 (2004) 673-695
    • (2004) Energy Conservation and Management , vol.45 , pp. 673-695
    • Wang, S.W.1    Chen, Y.M.2
  • 14
    • 0033083952 scopus 로고    scopus 로고
    • Isolation enhanced principal component analysis
    • Gertler J., Li W.H., Huang Y.B., and McAvoy T. Isolation enhanced principal component analysis. AIChE Journal 45 2 (1999) 323-334
    • (1999) AIChE Journal , vol.45 , Issue.2 , pp. 323-334
    • Gertler, J.1    Li, W.H.2    Huang, Y.B.3    McAvoy, T.4
  • 16
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., and MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 11 (2001) 387-400
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 17
    • 56049101871 scopus 로고    scopus 로고
    • B.M. Wise, N.L. Ricker, Recent advances in multivariate statistical process control: improving robustness and sensitivity, in: K. Najim, J.P. Parbary (Eds.), IFAC International Symposium, ADCHEM'91, Toulouse, France, 1991, pp. 125-130.
    • B.M. Wise, N.L. Ricker, Recent advances in multivariate statistical process control: improving robustness and sensitivity, in: K. Najim, J.P. Parbary (Eds.), IFAC International Symposium, ADCHEM'91, Toulouse, France, 1991, pp. 125-130.
  • 18
    • 33645030470 scopus 로고    scopus 로고
    • Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method
    • Jin X.Q., and Du Z.M. Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method. Applied Thermal Engineering 26 (2006) 1226-1237
    • (2006) Applied Thermal Engineering , vol.26 , pp. 1226-1237
    • Jin, X.Q.1    Du, Z.M.2
  • 19
    • 34147173292 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on improved PCA with JAA method in VAV systems
    • Du Z.M., Jin X.Q., and Wu L.Z. Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Building and Environment 42 (2007) 3221-3232
    • (2007) Building and Environment , vol.42 , pp. 3221-3232
    • Du, Z.M.1    Jin, X.Q.2    Wu, L.Z.3
  • 20
    • 0032643161 scopus 로고    scopus 로고
    • Dynamic simulation of building VAV air-conditioning system and evaluation of EMCS Online Control Strategies
    • Wang S.W. Dynamic simulation of building VAV air-conditioning system and evaluation of EMCS Online Control Strategies. Building and Environment 34 (1999) 681-705
    • (1999) Building and Environment , vol.34 , pp. 681-705
    • Wang, S.W.1
  • 21
    • 0036884477 scopus 로고    scopus 로고
    • A robust control strategy for combining DCV control with economizer control
    • Wang S.W., and Xu X.H. A robust control strategy for combining DCV control with economizer control. Energy Conversion and Management 43 (2002) 2569-2588
    • (2002) Energy Conversion and Management , vol.43 , pp. 2569-2588
    • Wang, S.W.1    Xu, X.H.2
  • 23
    • 38349154216 scopus 로고    scopus 로고
    • Performance improvement of VAV air conditioning system through feed forward compensation decoupling and genetic algorithm
    • Wang J., and Wang Y. Performance improvement of VAV air conditioning system through feed forward compensation decoupling and genetic algorithm. Applied Thermal Engineering 28 5-6 (2008) 566-574
    • (2008) Applied Thermal Engineering , vol.28 , Issue.5-6 , pp. 566-574
    • Wang, J.1    Wang, Y.2
  • 24
    • 0035697464 scopus 로고    scopus 로고
    • R.G. Carlos, V.R. Miguel, Decoupled control of temperature and relative humidity using a variable-air-volume HVAC system and non-interacting control, in: IEEE Conference on Control Applications-Proceedings, 2001, pp. 1147-1151.
    • R.G. Carlos, V.R. Miguel, Decoupled control of temperature and relative humidity using a variable-air-volume HVAC system and non-interacting control, in: IEEE Conference on Control Applications-Proceedings, 2001, pp. 1147-1151.
  • 26
    • 0031273965 scopus 로고    scopus 로고
    • Multiple-page mapping artificial neural network algorithm used for constant tension control
    • Luo F.L., and Wen C.Y. Multiple-page mapping artificial neural network algorithm used for constant tension control. Expert Systems with Applications 13 4 (1997) 307-315
    • (1997) Expert Systems with Applications , vol.13 , Issue.4 , pp. 307-315
    • Luo, F.L.1    Wen, C.Y.2
  • 27
    • 0036809439 scopus 로고    scopus 로고
    • Eigenstructure versus optimal control for decoupling
    • Oliva A.P., and Leite W.C. Eigenstructure versus optimal control for decoupling. Control Engineering Practice 10 10 (2002) 1059-1079
    • (2002) Control Engineering Practice , vol.10 , Issue.10 , pp. 1059-1079
    • Oliva, A.P.1    Leite, W.C.2
  • 28
    • 16244389663 scopus 로고    scopus 로고
    • H.L. Shu, X.C. Guo, Decoupling control of multivariable time-varying systems based on PID neural network, in: Proceedings of 5th Asian Control Conference, vol. 1. 2004, pp. 682-685.
    • H.L. Shu, X.C. Guo, Decoupling control of multivariable time-varying systems based on PID neural network, in: Proceedings of 5th Asian Control Conference, vol. 1. 2004, pp. 682-685.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.