-
1
-
-
0001938848
-
Chasse au canard
-
E. BENOIT, J.-L. CALLOT, F. DIENER, AND M. DIENER, Chasse au canard, Collect. Math., 32 (1981), pp. 37-119.
-
(1981)
Collect. Math
, vol.32
, pp. 37-119
-
-
BENOIT, E.1
CALLOT, J.-L.2
DIENER, F.3
DIENER, M.4
-
2
-
-
57249095030
-
-
M. BRØNS, M. KRUPA, AND M. WECHSELBERGER, Mixed mode oscillations due to the generalized canard phenomenon, in Bifurcation Theory and Spatio-Temporal Pattern Formation, Fields Inst. Commun. 49, AMS, Providence, RI, 2006, pp. 39-63.
-
M. BRØNS, M. KRUPA, AND M. WECHSELBERGER, Mixed mode oscillations due to the generalized canard phenomenon, in Bifurcation Theory and Spatio-Temporal Pattern Formation, Fields Inst. Commun. 49, AMS, Providence, RI, 2006, pp. 39-63.
-
-
-
-
3
-
-
57249095027
-
Dynamics Near a Folded Saddle-Node of Type II
-
in preparation
-
M. BRØNS, M. KRUPA, AND M. WECHSELBERGER, Dynamics Near a Folded Saddle-Node of Type II, in preparation.
-
-
-
BRØNS, M.1
KRUPA, M.2
WECHSELBERGER, M.3
-
4
-
-
21344470280
-
A Farey tree organization of locking regions for simple circle maps
-
K. M. BRUCKS AND C. TRESSER, A Farey tree organization of locking regions for simple circle maps, Proc. Amer. Math. Soc, 124 (1996), pp. 637-647.
-
(1996)
Proc. Amer. Math. Soc
, vol.124
, pp. 637-647
-
-
BRUCKS, K.M.1
TRESSER, C.2
-
5
-
-
0002294440
-
The canard unchained or how fast/slow dynamical systems bifurcate
-
M. DIENER, The canard unchained or how fast/slow dynamical systems bifurcate, Math. Intelligencer, 6 (1984), pp. 38-49.
-
(1984)
Math. Intelligencer
, vol.6
, pp. 38-49
-
-
DIENER, M.1
-
6
-
-
16244415882
-
Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies
-
J. DROVER, J. RUBIN, J. SU, AND B. ERMENTROUT, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies, SIAM J. Appl. Math., 65 (2004), pp. 69-92.
-
(2004)
SIAM J. Appl. Math
, vol.65
, pp. 69-92
-
-
DROVER, J.1
RUBIN, J.2
SU, J.3
ERMENTROUT, B.4
-
7
-
-
57249115494
-
-
I. DUMORTIER, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 408, D. Schlomiuk, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 19-73.
-
I. DUMORTIER, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 408, D. Schlomiuk, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 19-73.
-
-
-
-
9
-
-
0003297685
-
Relaxation oscillations including a standard chase on French ducks
-
Asymptotic Analysis, II, Springer-Verlag, Berlin
-
W. ECKHAUS, Relaxation oscillations including a standard chase on French ducks, in Asymptotic Analysis, II, Lecture Notes in Math. 985, Springer-Verlag, Berlin, 1983, pp. 449-494.
-
(1983)
Lecture Notes in Math
, vol.985
, pp. 449-494
-
-
ECKHAUS, W.1
-
10
-
-
0030219251
-
Nonlinear chemical dynamics: Oscillations, patterns, and chaos
-
I. R. EPSTEIN AND K. SHOWALTER, Nonlinear chemical dynamics: Oscillations, patterns, and chaos, J. Phys. Chem., 100 (1996), pp. 13132-13147.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 13132-13147
-
-
EPSTEIN, I.R.1
SHOWALTER, K.2
-
11
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
N. FENICHEL, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53-98.
-
(1979)
J. Differential Equations
, vol.31
, pp. 53-98
-
-
FENICHEL, N.1
-
12
-
-
57249116631
-
Bifurcation, bursting and frequency spike adaptation
-
J. GUCKENHEIMER, R. HARRIS-WARWICK, J. PECK, AND A. WILMS, Bifurcation, bursting and frequency spike adaptation, J. Comput. Neurosci, 4 (1997), pp. 255-277.
-
(1997)
J. Comput. Neurosci
, vol.4
, pp. 255-277
-
-
GUCKENHEIMER, J.1
HARRIS-WARWICK, R.2
PECK, J.3
WILMS, A.4
-
13
-
-
0346687131
-
Asymptotic analysis of subcritical Hopf-homoclinic bifurcation
-
J. GUCKENHEIMER AND A. WILMS, Asymptotic analysis of subcritical Hopf-homoclinic bifurcation, Phys. D, 139 (2000), pp. 196-216.
-
(2000)
Phys. D
, vol.139
, pp. 196-216
-
-
GUCKENHEIMER, J.1
WILMS, A.2
-
14
-
-
0002316532
-
Geometric singular perturbation theory, in Dynamical Systems (Montecatini Terme,1994)
-
Springer-Verlag, Berlin
-
C. K. R. T. JONES, Geometric singular perturbation theory, in Dynamical Systems (Montecatini Terme,1994), Lecture Notes in Math. 1609, Springer-Verlag, Berlin, 1995, pp. 44-118.
-
(1609)
Lecture Notes in Math
, pp. 44-118
-
-
JONES, C.K.R.T.1
-
15
-
-
0000658639
-
Bifurcations and trajectories joining critical points
-
N. KOPELL AND L. N. HOWARD, Bifurcations and trajectories joining critical points, Advances in Math., 18 (1975), pp. 306-358.
-
(1975)
Advances in Math
, vol.18
, pp. 306-358
-
-
KOPELL, N.1
HOWARD, L.N.2
-
16
-
-
0002467474
-
Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram
-
M. T. M. KOPER, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram, Phys. D, 80 (1995), pp. 72-94.
-
(1995)
Phys. D
, vol.80
, pp. 72-94
-
-
KOPER, M.T.M.1
-
18
-
-
41549122782
-
Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron
-
to appear
-
M. KRUPA, N. POPOVIĆ, N. KOPELL, AND H. G. ROTSTEIN, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron, Chaos, to appear.
-
Chaos
-
-
KRUPA, M.1
POPOVIĆ, N.2
KOPELL, N.3
ROTSTEIN, H.G.4
-
19
-
-
0036052772
-
Extending geometric singular perturbation theory to nonhyperbolic points- fold and canard points in two dimensions
-
M. KRUPA AND P. SZMOLYAN, Extending geometric singular perturbation theory to nonhyperbolic points- fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), pp. 286-314.
-
(2001)
SIAM J. Math. Anal
, vol.33
, pp. 286-314
-
-
KRUPA, M.1
SZMOLYAN, P.2
-
20
-
-
0035839416
-
Relaxation oscillation and canard explosion
-
M. KRUPA AND P. SZMOLYAN, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), pp. 312-368.
-
(2001)
J. Differential Equations
, vol.174
, pp. 312-368
-
-
KRUPA, M.1
SZMOLYAN, P.2
-
22
-
-
36549098281
-
Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction
-
R. LARTER, C. G. STEINMETZ, AND B. D. AGUDA, Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction, J. Phys. Chem., 89 (1988), pp. 6506-6514.
-
(1988)
J. Phys. Chem
, vol.89
, pp. 6506-6514
-
-
LARTER, R.1
STEINMETZ, C.G.2
AGUDA, B.D.3
-
23
-
-
2942560675
-
Multimodal regimes in a compartmental model of the dopamine neuron
-
G. S. MEDVEDEV AND J. E. CISTERNAS, Multimodal regimes in a compartmental model of the dopamine neuron, Phys. D, 194 (2004), pp. 333-356.
-
(2004)
Phys. D
, vol.194
, pp. 333-356
-
-
MEDVEDEV, G.S.1
CISTERNAS, J.E.2
-
24
-
-
0042062569
-
Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron
-
G. S. MEDVEDEV, C. J. WILSON, J. C. CALLAWAY, AND N. KOPELL, Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron, J. Comput. Neurosci., 15 (2003), pp. 53-69.
-
(2003)
J. Comput. Neurosci
, vol.15
, pp. 53-69
-
-
MEDVEDEV, G.S.1
WILSON, C.J.2
CALLAWAY, J.C.3
KOPELL, N.4
-
25
-
-
0004206153
-
-
Ergeb. Math. Grenzgeb, 3 25, Springer-Verlag, Berlin
-
W. DE MELO AND S. VAN STRIEN, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer-Verlag, Berlin, 1993.
-
(1993)
One-Dimensional Dynamics
-
-
DE MELO, W.1
VAN STRIEN, S.2
-
26
-
-
57249116632
-
-
A. MILIK AND P. SZMOLYAN, Multiple time scales and canards in a chemical oscillator, in Multiple-Time-Scale Dynamical Systems, IMA Math. Appl. 122, C. K. R. T. Jones and A. I. Khibnik, eds., Springer-Verlag, New York, 2001, pp. 117-140.
-
A. MILIK AND P. SZMOLYAN, Multiple time scales and canards in a chemical oscillator, in Multiple-Time-Scale Dynamical Systems, IMA Vol. Math. Appl. 122, C. K. R. T. Jones and A. I. Khibnik, eds., Springer-Verlag, New York, 2001, pp. 117-140.
-
-
-
-
27
-
-
0032016741
-
Geometry of mixed-mode oscillations in the 3-d autocatalator
-
A. MILIK, P. SZMOLYAN, H. LÖFFELMANN, AND E. GRÖLLER, Geometry of mixed-mode oscillations in the 3-d autocatalator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), pp. 505-519.
-
(1998)
Internat. J. Bifur. Chaos Appl. Sci. Engrg
, vol.8
, pp. 505-519
-
-
MILIK, A.1
SZMOLYAN, P.2
LÖFFELMANN, H.3
GRÖLLER, E.4
-
28
-
-
0000069965
-
Canards in a surface oxidation reaction
-
J. MOEHLIS, Canards in a surface oxidation reaction, J. Nonlinear Sci., 12 (2002), pp. 319-345.
-
(2002)
J. Nonlinear Sci
, vol.12
, pp. 319-345
-
-
MOEHLIS, J.1
-
29
-
-
0036219109
-
Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network
-
C. A. DEL NEGRO, C. G. WILSON, R. J. BUTERA, H. RIGATTO, AND J. C. SMITH, Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network, Biophys. J., 82 (2002), pp. 206-214.
-
(2002)
Biophys. J
, vol.82
, pp. 206-214
-
-
DEL NEGRO, C.A.1
WILSON, C.G.2
BUTERA, R.J.3
RIGATTO, H.4
SMITH, J.C.5
-
30
-
-
33644925550
-
Localized and asynchronous patterns via canards in coupled calcium oscillators
-
H. G. ROTSTEIN AND R. KUSKE, Localized and asynchronous patterns via canards in coupled calcium oscillators, Phys. D, 215 (2006), pp. 46-61.
-
(2006)
Phys. D
, vol.215
, pp. 46-61
-
-
ROTSTEIN, H.G.1
KUSKE, R.2
-
31
-
-
33749533590
-
The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells
-
H. G. ROTSTEIN, T. OPPERMANN, J. A. WHITE, AND N. KOPELL, The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells, J. Comput. Neurosci., 21 (2006), pp. 271-292.
-
(2006)
J. Comput. Neurosci
, vol.21
, pp. 271-292
-
-
ROTSTEIN, H.G.1
OPPERMANN, T.2
WHITE, J.A.3
KOPELL, N.4
-
32
-
-
34547379404
-
Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model
-
J. RUBIN AND M. WECHSELBERGER, Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model, Biol. Cybernet., 97 (2007), pp. 5-32.
-
(2007)
Biol. Cybernet
, vol.97
, pp. 5-32
-
-
RUBIN, J.1
WECHSELBERGER, M.2
-
35
-
-
57249092225
-
-
personal communication
-
M. WECHSELBERGER, personal communication.
-
-
-
WECHSELBERGER, M.1
-
37
-
-
0034118103
-
Coupled oscillator model of the dopaminergic neuron of the substantia nigra
-
C. J. WILSON AND J. C. CALLAWAY, Coupled oscillator model of the dopaminergic neuron of the substantia nigra, J. Neurophysiol., 83 (2000), pp. 3084-3100.
-
(2000)
J. Neurophysiol
, vol.83
, pp. 3084-3100
-
-
WILSON, C.J.1
CALLAWAY, J.C.2
-
38
-
-
9344260562
-
Periodic kinetics of oxidation of malonic acid in solution
-
A. M. ZHABOTINSKY, Periodic kinetics of oxidation of malonic acid in solution, Biofizika, 9 (1964), pp. 306-311.
-
(1964)
Biofizika
, vol.9
, pp. 306-311
-
-
ZHABOTINSKY, A.M.1
|