-
4
-
-
0014560133
-
-
10.1017/S0022112069000127
-
L. A. Segel, J. Fluid Mech. 10.1017/S0022112069000127 38, 203 (1969).
-
(1969)
J. Fluid Mech.
, vol.38
, pp. 203
-
-
Segel, L.A.1
-
7
-
-
42749104055
-
-
10.1103/PhysRevE.68.026219
-
D. Tanaka and Y. Kuramoto, Phys. Rev. E 10.1103/PhysRevE.68.026219 68, 026219 (2003).
-
(2003)
Phys. Rev. e
, vol.68
, pp. 026219
-
-
Tanaka, D.1
Kuramoto, Y.2
-
8
-
-
85009499615
-
-
10.1143/PTP.94.321
-
Y. Kuramoto, Prog. Theor. Phys. 10.1143/PTP.94.321 94, 321 (1995).
-
(1995)
Prog. Theor. Phys.
, vol.94
, pp. 321
-
-
Kuramoto, Y.1
-
9
-
-
0003124420
-
-
10.1016/S0167-2789(96)00264-3
-
Y. Kuramoto and H. Nakao, Physica D 10.1016/S0167-2789(96)00264-3 103, 294 (1997).
-
(1997)
Physica D
, vol.103
, pp. 294
-
-
Kuramoto, Y.1
Nakao, H.2
-
10
-
-
0035967087
-
-
10.1098/rstb.2000.0769
-
P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. Wiener, Philos. Trans. R. Soc. London, Ser. B 10.1098/rstb.2000.0769 356, 299 (2001).
-
(2001)
Philos. Trans. R. Soc. London, Ser. B
, vol.356
, pp. 299
-
-
Bressloff, P.C.1
Cowan, J.D.2
Golubitsky, M.3
Thomas, P.J.4
Wiener, M.5
-
11
-
-
0035402912
-
-
10.1088/0951-7715/14/4/305
-
P. C. Bressloff, J. D. Cowan, M. Golubitsky, and P. J. Thomas, Nonlinearity 10.1088/0951-7715/14/4/305 14, 739 (2001).
-
(2001)
Nonlinearity
, vol.14
, pp. 739
-
-
Bressloff, P.C.1
Cowan, J.D.2
Golubitsky, M.3
Thomas, P.J.4
-
12
-
-
0038892051
-
-
10.1162/089976602317250861
-
P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. Wiener, Neural Comput. 10.1162/089976602317250861 14, 473 (2002).
-
(2002)
Neural Comput.
, vol.14
, pp. 473
-
-
Bressloff, P.C.1
Cowan, J.D.2
Golubitsky, M.3
Thomas, P.J.4
Wiener, M.5
-
14
-
-
55849152176
-
-
edited by S. J. Hogan, A. Champneys, and B. Krauskopf (Institute of Physics, Bristol
-
P. C. Bressloff and J. D. Cowan, in Nonlinear Dynamics: Where do We Go From Here?, edited by, S. J. Hogan, A. Champneys and B. Krauskopf, (Institute of Physics, Bristol, 2002), Chap..
-
(2002)
Nonlinear Dynamics: Where Do We Go from Here?
-
-
Bressloff, P.C.1
Cowan, J.D.2
-
18
-
-
0001778263
-
-
edited by A. G. Leventhal (CRC Press, Boca Raton
-
S. LeVay and S. B. Nelson, in The Neural Basis of Visual Function, edited by, A. G. Leventhal, (CRC Press, Boca Raton, 1991), pp. 266-315.
-
(1991)
The Neural Basis of Visual Function
, pp. 266-315
-
-
Levay, S.1
Nelson, S.B.2
-
21
-
-
55849133860
-
-
The cortex is, of course, three dimensional, since it has nonzero thickness with a distinctive layered structure. However, one finds that cells with similar feature preferences tend to arrange themselves in vertical columns so that to a first approximation the layered structure of cortex can be ignored. However, it is important to note that there can be functional differences between neurons in distinct layers within the same column so that certain care has to be taken in ignoring the third dimension. Given that optical imaging studies measure the response properties of superficial layers of cortex, we consider a model based on the structure of these layers.
-
The cortex is, of course, three dimensional, since it has nonzero thickness with a distinctive layered structure. However, one finds that cells with similar feature preferences tend to arrange themselves in vertical columns so that to a first approximation the layered structure of cortex can be ignored. However, it is important to note that there can be functional differences between neurons in distinct layers within the same column so that certain care has to be taken in ignoring the third dimension. Given that optical imaging studies measure the response properties of superficial layers of cortex, we consider a model based on the structure of these layers.
-
-
-
-
24
-
-
0029129363
-
-
10.1111/j.1460-9568.1995.tb00720.x
-
T. Bonhoeffer, D. S. Kim, D. Malonek, D. Shoham, and A. Grinvald, Eur. J. Neurosci. 7, 1973 (1995). 10.1111/j.1460-9568.1995.tb00720.x
-
(1995)
Eur. J. Neurosci.
, vol.7
, pp. 1973
-
-
Bonhoeffer, T.1
Kim, D.S.2
Malonek, D.3
Shoham, D.4
Grinvald, A.5
-
27
-
-
0029093324
-
-
10.1126/science.7638624
-
R. Douglas, C. Koch, M. Mahowald, K. Martin, and H. Suarez, Science 269, 981 (1995). 10.1126/science.7638624
-
(1995)
Science
, vol.269
, pp. 981
-
-
Douglas, R.1
Koch, C.2
Mahowald, M.3
Martin, K.4
Suarez, H.5
-
28
-
-
13244257104
-
-
10.1038/nn1391
-
J. Marino, J. Schummers, D. C. Lyon, L. Schwabe, O. Beck, P. Wiesing, K. Obermayer, and M. Sur, Nat. Neurosci. 8, 194 (2005). 10.1038/nn1391
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 194
-
-
Marino, J.1
Schummers, J.2
Lyon, D.C.3
Schwabe, L.4
Beck, O.5
Wiesing, P.6
Obermayer, K.7
Sur, M.8
-
33
-
-
0027425233
-
-
10.1073/pnas.90.22.10469
-
R. Malach, Y. Amir, M. Harel, and A. Grinvald, Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.90.22.10469 90, 10469 (1993).
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 10469
-
-
Malach, R.1
Amir, Y.2
Harel, M.3
Grinvald, A.4
-
34
-
-
0029932028
-
-
10.1093/cercor/6.2.297
-
T. Yoshioka, G. G. Blasdel, J. B. Levitt, and J. S. Lund, Cereb. Cortex 6, 297 (1996). 10.1093/cercor/6.2.297
-
(1996)
Cereb. Cortex
, vol.6
, pp. 297
-
-
Yoshioka, T.1
Blasdel, G.G.2
Levitt, J.B.3
Lund, J.S.4
-
35
-
-
0031020135
-
-
W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, J. Neurosci. 17, 2112 (1997).
-
(1997)
J. Neurosci.
, vol.17
, pp. 2112
-
-
Bosking, W.H.1
Zhang, Y.2
Schofield, B.3
Fitzpatrick, D.4
-
37
-
-
0036813152
-
-
A. Angelucci, J. B. Levitt, E. J. S. Walton, J.-M. Hupé, J. Bullier, and J. S. Lund, J. Neurosci. 22, 8633 (2002).
-
(2002)
J. Neurosci.
, vol.22
, pp. 8633
-
-
Angelucci, A.1
Levitt, J.B.2
Walton, E.J.S.3
Hupé, J.-M.4
Bullier, J.5
Lund, J.S.6
-
39
-
-
14244268572
-
-
10.1523/JNEUROSCI.4137-04.2005
-
A. Shmuel, M. Korman, M. Harel, S. Ullman, R. Malach, and A. Grinvald, J. Neurosci. 25, 2117 (2005). 10.1523/JNEUROSCI.4137-04.2005
-
(2005)
J. Neurosci.
, vol.25
, pp. 2117
-
-
Shmuel, A.1
Korman, M.2
Harel, M.3
Ullman, S.4
Malach, R.5
Grinvald, A.6
-
41
-
-
0029840464
-
-
10.1073/pnas.93.18.9869
-
L. J. Toth, S. C. Rao, D. S. Kim, D. C. Somers, and M. Sur, Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.93.18.9869 93, 9869 (1996).
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 9869
-
-
Toth, L.J.1
Rao, S.C.2
Kim, D.S.3
Somers, D.C.4
Sur, M.5
-
42
-
-
0030046041
-
-
10.1073/pnas.93.2.615
-
C. D. Gilbert, A. Das, M. Ito, M. Kapadia, and G. Westheimer, Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.93.2.615 93, 615 (1996).
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 615
-
-
Gilbert, C.D.1
Das, A.2
Ito, M.3
Kapadia, M.4
Westheimer, G.5
-
43
-
-
0033865130
-
-
10.1016/S0959-4388(00)00113-6
-
D. Fitzpatrick, Curr. Opin. Neurobiol. 10, 438 (2000). 10.1016/S0959-4388(00)00113-6
-
(2000)
Curr. Opin. Neurobiol.
, vol.10
, pp. 438
-
-
Fitzpatrick, D.1
-
44
-
-
0035783251
-
-
10.1016/S0079-6123(01)34014-1
-
J. Bullier, J. M. Hupé, A. J. James, and P. Girard, Prog. Brain Res. 134, 193 (2001). 10.1016/S0079-6123(01)34014-1
-
(2001)
Prog. Brain Res.
, vol.134
, pp. 193
-
-
Bullier, J.1
Hupé, J.M.2
James, A.J.3
Girard, P.4
-
47
-
-
0001104658
-
-
10.1088/0034-4885/61/4/002
-
G. B. Ermentrout, Rep. Prog. Phys. 10.1088/0034-4885/61/4/002 61, 353 (1998).
-
(1998)
Rep. Prog. Phys.
, vol.61
, pp. 353
-
-
Ermentrout, G.B.1
-
48
-
-
23944441267
-
-
10.1007/s00422-005-0574-y
-
S. Coombes, Biol. Cybern. 10.1007/s00422-005-0574-y 93, 91 (2005).
-
(2005)
Biol. Cybern.
, vol.93
, pp. 91
-
-
Coombes, S.1
-
49
-
-
0037135809
-
-
10.1103/PhysRevLett.89.088101
-
P. C. Bressloff, Phys. Rev. Lett. 10.1103/PhysRevLett.89.088101 89, 088101 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 088101
-
-
Bressloff, P.C.1
-
50
-
-
0141887054
-
-
10.1016/S0167-2789(03)00238-0
-
P. C. Bressloff, Physica D 10.1016/S0167-2789(03)00238-0 185, 131 (2003).
-
(2003)
Physica D
, vol.185
, pp. 131
-
-
Bressloff, P.C.1
-
51
-
-
33746999061
-
-
10.1523/JNEUROSCI.1253-06.2006
-
L. Schwabe, K. Obermayer, A. Angelucci, and P. C. Bressloff, J. Neurosci. 10.1523/JNEUROSCI.1253-06.2006 26, 9117 (2006).
-
(2006)
J. Neurosci.
, vol.26
, pp. 9117
-
-
Schwabe, L.1
Obermayer, K.2
Angelucci, A.3
Bressloff, P.C.4
-
52
-
-
0035879172
-
-
D. J. Wielaard, M. J. Shelley, D. W. McLaughlin, and R. Shapley, J. Neurosci. 21, 5203 (2001).
-
(2001)
J. Neurosci.
, vol.21
, pp. 5203
-
-
Wielaard, D.J.1
Shelley, M.J.2
McLaughlin, D.W.3
Shapley, R.4
-
53
-
-
0020442085
-
-
10.1126/science.7134981
-
R. B. Tootell, M. S. Silverman, E. Switkes, and R. L. DeValois, Science 10.1126/science.7134981 218, 902 (1982).
-
(1982)
Science
, vol.218
, pp. 902
-
-
Tootell, R.B.1
Silverman, M.S.2
Switkes, E.3
Devalois, R.L.4
-
54
-
-
0017358115
-
-
10.1007/BF01885636
-
E. Schwartz, Biol. Cybern. 10.1007/BF01885636 25, 181 (1977).
-
(1977)
Biol. Cybern.
, vol.25
, pp. 181
-
-
Schwartz, E.1
-
56
-
-
22544456238
-
-
10.1016/j.neuron.2005.06.011
-
H. Yu, B. J. Farley, D. Z. Jin, and M. Sur, Neuron 47, 267 (2005). 10.1016/j.neuron.2005.06.011
-
(2005)
Neuron
, vol.47
, pp. 267
-
-
Yu, H.1
Farley, B.J.2
Jin, D.Z.3
Sur, M.4
-
59
-
-
55849116119
-
-
A similar decomposition was previously carried out in continuum versions of the coupled hypercolumn model, except that d0, d1 →0 and, hence, the local part reduced to w (θ- θ′) δ (r- r′) and the long-range connections did not have a gap.
-
A similar decomposition was previously carried out in continuum versions of the coupled hypercolumn model, except that d0, d1 →0 and, hence, the local part reduced to w (θ- θ′) δ (r- r′) and the long-range connections did not have a gap.
-
-
-
-
60
-
-
0142019162
-
-
10.1126/science.276.5318.1551
-
P. E. Maldonado, I. Godecke, C. M. Gray, and T. Bonhoeffer, Science 10.1126/science.276.5318.1551 276, 1551 (1997).
-
(1997)
Science
, vol.276
, pp. 1551
-
-
Maldonado, P.E.1
Godecke, I.2
Gray, C.M.3
Bonhoeffer, T.4
-
61
-
-
0037028071
-
-
10.1016/S0896-6273(02)01012-7
-
J. Schummers, J. Marino, and M. Sur, Neuron 36, 969 (2002). 10.1016/S0896-6273(02)01012-7
-
(2002)
Neuron
, vol.36
, pp. 969
-
-
Schummers, J.1
Marino, J.2
Sur, M.3
-
62
-
-
40249116748
-
-
10.1016/j.neuron.2008.01.020
-
I. Nauhaus, A. Benucci, M. Carandini, and D. L. Ringach, Neuron 57, 673 (2008). 10.1016/j.neuron.2008.01.020
-
(2008)
Neuron
, vol.57
, pp. 673
-
-
Nauhaus, I.1
Benucci, A.2
Carandini, M.3
Ringach, D.L.4
-
63
-
-
0034608855
-
-
10.1073/pnas.110135097
-
D. Mclaughlin, R. Shapley, M. Shelley, and D. J. Wielaard, Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.110135097 97, 8087 (2000).
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 8087
-
-
McLaughlin, D.1
Shapley, R.2
Shelley, M.3
Wielaard, D.J.4
-
64
-
-
2442679125
-
-
10.1073/pnas.0401906101
-
D. Cai, L. Tao, M. Shelley, and D. W. Mclaughlin, Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.0401906101 101, 7757 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 7757
-
-
Cai, D.1
Tao, L.2
Shelley, M.3
McLaughlin, D.W.4
-
66
-
-
46149088976
-
-
10.1167/8.8.11
-
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. L. Ringach, J. Vision 8, 1 (2008). 10.1167/8.8.11
-
(2008)
J. Vision
, vol.8
, pp. 1
-
-
Singh, G.1
Memoli, F.2
Ishkhanov, T.3
Sapiro, G.4
Carlsson, G.5
Ringach, D.L.6
-
69
-
-
0030786828
-
-
10.1016/S0167-2789(96)00166-2
-
V. K. Jirsa and H. Haken, Physica D 10.1016/S0167-2789(96)00166-2 99, 503 (1997).
-
(1997)
Physica D
, vol.99
, pp. 503
-
-
Jirsa, V.K.1
Haken, H.2
-
72
-
-
18344409743
-
-
10.1103/PhysRevE.63.041909
-
P. A. Robinson, P. N. Loxley, S. C. O'Connor, and C. J. Rennie, Phys. Rev. E 10.1103/PhysRevE.63.041909 63, 041909 (2001).
-
(2001)
Phys. Rev. e
, vol.63
, pp. 041909
-
-
Robinson, P.A.1
Loxley, P.N.2
O'Connor, S.C.3
Rennie, C.J.4
-
78
-
-
55849096737
-
-
The dispersion relation 4.20 with λ± = ρ± +i ω± is in fact symmetric with respect to the transformation ω± →± ω± so that standing waves could also occur.
-
The dispersion relation 4.20 with λ± = ρ± +i ω± is in fact symmetric with respect to the transformation ω± →± ω± so that standing waves could also occur.
-
-
-
-
79
-
-
55849141758
-
-
note
-
One way to handle this infinite degeneracy is to restrict the space of solutions to that of doubly periodic functions corresponding to regular tilings of the plane. The original Euclidean symmetry group is then restricted to the symmetry group of the underlying lattice. In particular, there are only a finite number of rotations and reflections to consider for each lattice (modulo an arbitrary rotation of the whole plane), which correspond to the so-called holohedries of the plane. Consequently the corresponding space of marginally stable modes is now finite-dimensional-we can only rotate eigenfunctions through a finite set of angles (for example, multiples of n/2 for a square lattice and multiples of n/3 for an hexagonal lattice). The linear eigenmodes now consist of a finite linear combination of either even (+) or odd (-) stationary plane waves z (r) = n=1 N e-2i φn [cn ei kn r ± c̄ n e-i kn r]. Here N=2 for a square or rhombic lattice and N=3 for an hexagonal lattice. Also k1 k2 = kc2 cos φ with φ=π/2 for N=2, and φ=2π/3 for N=3 with k3 =- k1 - k2. Note that perturbation methods can be used to derive amplitude equations for the coefficients cn, although the basic structure of these equations can be deduced using symmetry arguments.
-
-
-
-
83
-
-
33845421047
-
-
D. Cai, L. Tao, A. A. Rangan, and D. W. Mclaughlin, Commun. Math. Sci. 4, 97 (2006).
-
(2006)
Commun. Math. Sci.
, vol.4
, pp. 97
-
-
Cai, D.1
Tao, L.2
Rangan, A.A.3
McLaughlin, D.W.4
-
84
-
-
33748344249
-
-
10.1146/annurev.neuro.29.051605.112939
-
P. R. Roelfsema, Annu. Rev. Neurosci. 29, 203 (2006). 10.1146/annurev.neuro.29.051605.112939
-
(2006)
Annu. Rev. Neurosci.
, vol.29
, pp. 203
-
-
Roelfsema, P.R.1
|