메뉴 건너뛰기




Volumn 45, Issue 11, 2008, Pages 1629-1638

Predicting the dynamic properties of glyben using a modular neural network (MNN)

Author keywords

Dynamic soil properties; Frequency dependence; Glycerin bentonite mixture; Modular neural networks; Synthetic clay

Indexed keywords

ALCOHOLS; BENTONITE; CLAY; CLAY MINERALS; FORECASTING; GEOLOGIC MODELS; GLYCEROL; IMAGE CLASSIFICATION; SHEAR STRAIN; SOIL TESTING; SOILS; VEGETATION;

EID: 55749111388     PISSN: 00083674     EISSN: None     Source Type: Journal    
DOI: 10.1139/T08-054     Document Type: Article
Times cited : (4)

References (34)
  • 1
    • 1642381126 scopus 로고
    • Choosing optimal network structure
    • Paris, 9-13 July, Kluwer Academic Publishers, Dordrecht, the Netherlands. pp
    • Barna, G., and Kaski, K. 1990. Choosing optimal network structure. In Proceedings of the International Neural Network Conference (INNC90), Paris, 9-13 July 1990. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 890-893.
    • (1990) Proceedings of the International Neural Network Conference (INNC90) , pp. 890-893
    • Barna, G.1    Kaski, K.2
  • 3
    • 0024861871 scopus 로고
    • Approximation of superpositions of a sigmoidal function
    • Cybenko, G. 1989. Approximation of superpositions of a sigmoidal function. Mathematics of Control Signals and Systems, 2(4): 303-314.
    • (1989) Mathematics of Control Signals and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 55749107672 scopus 로고    scopus 로고
    • Ph.D. thesis, Faculty of Science, University of Geneva, Geneva, Switzerland
    • Francesco, M. 2004. Functional networks. Ph.D. thesis, Faculty of Science, University of Geneva, Geneva, Switzerland.
    • (2004) Functional networks
    • Francesco, M.1
  • 7
    • 0025782169 scopus 로고    scopus 로고
    • Ghaboussi, J., Garrett, J.H., and Wu, X. 1991. Knowledge-based modeling of material behaviour with neural network. Journal of Engineering Mechanics, (ASCE), 117(1): 132-153. doi:10.1061/(ASCE)0733-9399(1991)117:1(132).
    • Ghaboussi, J., Garrett, J.H., and Wu, X. 1991. Knowledge-based modeling of material behaviour with neural network. Journal of Engineering Mechanics, (ASCE), 117(1): 132-153. doi:10.1061/(ASCE)0733-9399(1991)117:1(132).
  • 8
    • 0028666973 scopus 로고    scopus 로고
    • Goh, A.T.C. 1994. Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical Engineering, 120(9): 1467-1480. doi:10.1061/(ASCE)0733-9410(1994)120:9(1467).
    • Goh, A.T.C. 1994. Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical Engineering, 120(9): 1467-1480. doi:10.1061/(ASCE)0733-9410(1994)120:9(1467).
  • 9
    • 0030403486 scopus 로고    scopus 로고
    • Goh, A.T.C. 1996. Neural-network modeling of CPT seismic liquefaction data. Journal of Geotechnical Engineering, ASCE, 122(1): 70-73. doi:10.106.1/(ASCE)0733-94100.996)122:1(70).
    • Goh, A.T.C. 1996. Neural-network modeling of CPT seismic liquefaction data. Journal of Geotechnical Engineering, ASCE), 122(1): 70-73. doi:10.106.1/(ASCE)0733-94100.996)122:1(70).
  • 10
    • 0036009678 scopus 로고    scopus 로고
    • Probabilistic neural network for evaluating seismic liquefaction potential
    • doi:10.11.39/t01-073
    • Goh, A.T.C. 2002. Probabilistic neural network for evaluating seismic liquefaction potential. Canadian Geotechnical Journal, 39(1): 219-232. doi:10.11.39/t01-073.
    • (2002) Canadian Geotechnical Journal , vol.39 , Issue.1 , pp. 219-232
    • Goh, A.T.C.1
  • 11
    • 0028563264 scopus 로고    scopus 로고
    • Happel, 13., and Murre, J. 1994. Design and evolution of modular neural network architectures. Neural Networks, 7: 985-1004. doi:10.1016/S0893- 6080(05)80155-8.
    • Happel, 13., and Murre, J. 1994. Design and evolution of modular neural network architectures. Neural Networks, 7: 985-1004. doi:10.1016/S0893- 6080(05)80155-8.
  • 13
    • 0023566098 scopus 로고
    • Kolmogorov's mapping neural network. existence theorem
    • San Diego, Calif, 21-24 June, Institute of Electrical and Electronic Engineering IEEE, New York. pp
    • Hecht-Nielsen, R. 1987. Kolmogorov's mapping neural network. existence theorem. In Proceedings of the 1 st IEEE International Joint Conference on Neural Networks. San Diego, Calif., 21-24 June 1987. Institute of Electrical and Electronic Engineering (IEEE), New York. pp. 1-14.
    • (1987) Proceedings of the 1 st IEEE International Joint Conference on Neural Networks , pp. 1-14
    • Hecht-Nielsen, R.1
  • 14
    • 0036176610 scopus 로고    scopus 로고
    • Predicting geotechnical parameters of sands from CPT measurements using neural networks
    • doi:10.1111/1467-8667.00250
    • Hsein Juang, C., and Lu, P.C., and Chen, C.J. 2002. Predicting geotechnical parameters of sands from CPT measurements using neural networks. Computer-Aided Civil and Infrastructure Engineering, 17(1): 31-42. doi:10.1111/1467-8667.00250.
    • (2002) Computer-Aided Civil and Infrastructure Engineering , vol.17 , Issue.1 , pp. 31-42
    • Hsein Juang, C.1    Lu, P.C.2    Chen, C.J.3
  • 15
    • 29144532474 scopus 로고    scopus 로고
    • Estimation of air losses in compressed air tunneling using neural network
    • doi:10.1016/j.tust.2005.04.007
    • Javadi, A.A. 2006. Estimation of air losses in compressed air tunneling using neural network. Tunnelling and Underground Space Technology, 21: 9-20. doi:10.1016/j.tust.2005.04.007.
    • (2006) Tunnelling and Underground Space Technology , vol.21 , pp. 9-20
    • Javadi, A.A.1
  • 16
    • 0031171703 scopus 로고    scopus 로고
    • The bearing capacity of footings on a sand layer overlying soft clay
    • Kenny, M.J., and Andrawes, K.Z. 1997. The bearing capacity of footings on a sand layer overlying soft clay. Géotechnique, 47(2): 339-345.
    • (1997) Géotechnique , vol.47 , Issue.2 , pp. 339-345
    • Kenny, M.J.1    Andrawes, K.Z.2
  • 17
    • 33745276242 scopus 로고    scopus 로고
    • Kurup, P.U., and Griffin, E.P. 2006. Prediction of soil composition from CPT data using general regression neural network. Journal of Computing in Civil Engineering, 20(4): 281-289. doi:10.1061/(ASCE)0887-3801(2006)20:4(281).
    • Kurup, P.U., and Griffin, E.P. 2006. Prediction of soil composition from CPT data using general regression neural network. Journal of Computing in Civil Engineering, 20(4): 281-289. doi:10.1061/(ASCE)0887-3801(2006)20:4(281).
  • 18
    • 55749113556 scopus 로고    scopus 로고
    • Lapedes, A., and Farber, R. 1987. How neural nets work. In neural information processing systems. American Institute of Physics, New York. pp. 442-456.
    • Lapedes, A., and Farber, R. 1987. How neural nets work. In neural information processing systems. American Institute of Physics, New York. pp. 442-456.
  • 19
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • Technical Report CRG-TR-89-4, Connectionist Research Group, University of Toronto, Toronto, Ont
    • Lean, Y. 1989. Generalization and network design strategies. Technical Report CRG-TR-89-4, Connectionist Research Group, University of Toronto, Toronto, Ont.
    • (1989)
    • Lean, Y.1
  • 20
    • 0037490974 scopus 로고    scopus 로고
    • An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation
    • doi:10.1016/S0266-352X(03)00058-2
    • Lee, S.J., Lee, S.R., and Kim, Y.S. 2003. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Computers and Geotechnics, 30(6): 489-503. doi:10.1016/S0266-352X(03)00058-2.
    • (2003) Computers and Geotechnics , vol.30 , Issue.6 , pp. 489-503
    • Lee, S.J.1    Lee, S.R.2    Kim, Y.S.3
  • 25
    • 55749101963 scopus 로고    scopus 로고
    • Characterization of glyben for seismic applications
    • The University of Western Ontario, London, Ont
    • Rayhani, M.H.T., and El Naggar, M.H. 2006. Characterization of glyben for seismic applications. Geotechnical Research Centre Report-GEOT-3-06, The University of Western Ontario, London, Ont.
    • (2006) Geotechnical Research Centre Report-GEOT-3-06
    • Rayhani, M.H.T.1    El Naggar, M.H.2
  • 26
    • 0005037327 scopus 로고
    • Modular neural networks: A state of the art
    • Technical Report, CSC-95026, Centre for System and Control, University of Glasgow, Glasgow, UK
    • Ronco, E., and Gawthrop, P. 1995. Modular neural networks: a state of the art. Technical Report - CSC-95026, Centre for System and Control, University of Glasgow, Glasgow, UK.
    • (1995)
    • Ronco, E.1    Gawthrop, P.2
  • 28
    • 16444364474 scopus 로고    scopus 로고
    • Shahin, M.A., Maier, H.R., and Jaksa, M.B. 2004. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering, (ASCE), 18(2): 105-114. doi:10.1061/(A.SCE)0887-3801(2004)18:2(105).
    • Shahin, M.A., Maier, H.R., and Jaksa, M.B. 2004. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering, (ASCE), 18(2): 105-114. doi:10.1061/(A.SCE)0887-3801(2004)18:2(105).
  • 29
    • 0032079074 scopus 로고    scopus 로고
    • Shi, J., Ortigao, J.A.R., and Bai, J. 1998. Modular neural networks for predicting settlements during tunneling. Journal of Geotechnical and Geoenvironmental Engineering, (ASCE), 124(5): 389-395. doi: 10.1061/(ASCE)1090-0241 (1998)124:5(389).
    • Shi, J., Ortigao, J.A.R., and Bai, J. 1998. Modular neural networks for predicting settlements during tunneling. Journal of Geotechnical and Geoenvironmental Engineering, (ASCE), 124(5): 389-395. doi: 10.1061/(ASCE)1090-0241 (1998)124:5(389).
  • 30
    • 0024186952 scopus 로고
    • Uplift resistance of soils
    • Sutherland, H.B. 1988. Uplift resistance of soils. Géotechnique, 38: 493-516.
    • (1988) Géotechnique , vol.38 , pp. 493-516
    • Sutherland, H.B.1
  • 31
    • 0346386402 scopus 로고
    • An artificial material for simulating Champlain clays
    • doi:10.1139/t73-040
    • Tavenas, F., Roy, M., and La Rochelle, P. 1973. An artificial material for simulating Champlain clays. Canadian Geotechnical Journal, 10(3): 489-503. doi:10.1139/t73-040.
    • (1973) Canadian Geotechnical Journal , vol.10 , Issue.3 , pp. 489-503
    • Tavenas, F.1    Roy, M.2    La Rochelle, P.3
  • 33
    • 0036090265 scopus 로고    scopus 로고
    • The artificial neural network as a tool for assessing geotechnical properties
    • doi:10.1.023/A:101.5066903985
    • Yang, Y., and Rosenbaum, M.S. 2002. The artificial neural network as a tool for assessing geotechnical properties. Geotechnical and Geological Engineering, 20: 149-168. doi:10.1.023/A:101.5066903985.
    • (2002) Geotechnical and Geological Engineering , vol.20 , pp. 149-168
    • Yang, Y.1    Rosenbaum, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.