메뉴 건너뛰기




Volumn E91-D, Issue 4, 2008, Pages 1042-1049

Small number of hidden units for ELM with two-stage linear model

Author keywords

Extreme learning machine; Least squares scheme; Linear model; Neural networks; Single hidden layer feedforward neural networks

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; INVERSE PROBLEMS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NETWORK LAYERS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; TRANSFER MATRIX METHOD;

EID: 55749110008     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1093/ietisy/e91-d.4.1042     Document Type: Article
Times cited : (16)

References (31)
  • 1
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • D. Nguyen and B.Widrow, "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights," Int'l Joint Conf. Neural Neural Networks, vol.3, pp.21-26, 1990.
    • (1990) Int'l Joint Conf. Neural Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 2
    • 0035272407 scopus 로고    scopus 로고
    • Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients
    • J.Y.F. Yam and T.W.S. Chow, "Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients," IEEE Trans. Neural Netw., vol.12, no.2, pp.430-434, 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.2 , pp. 430-434
    • Yam, J.Y.F.1    Chow, T.W.S.2
  • 5
    • 48049099949 scopus 로고    scopus 로고
    • A comparison of first and second order training algorithms for artificial neural networks
    • S.M.A. Burney, T.A. Jilani, and C. Ardil, "A comparison of first and second order training algorithms for artificial neural networks," International Journal of Computational Intelligence, vol.1, no.2, pp.218-224, 2004.
    • (2004) International Journal of Computational Intelligence , vol.1 , Issue.2 , pp. 218-224
    • Burney, S.M.A.1    Jilani, T.A.2    Ardil, C.3
  • 6
    • 0032267997 scopus 로고    scopus 로고
    • Adaptive neural nets filter using a recursive levenberg-marquardt search direction
    • Nov
    • L.S. Nghia, J. Sjöerg, and M. Viberg, "Adaptive neural nets filter using a recursive levenberg-marquardt search direction," Proc. Asilomar Conf. Signals, Syst., Comput., vol.1-4, pp.697-701, Nov. 1998.
    • (1998) Proc. Asilomar Conf. Signals, Syst., Comput , vol.1-4 , pp. 697-701
    • Nghia, L.S.1    Sjöerg, J.2    Viberg, M.3
  • 9
    • 0033334294 scopus 로고    scopus 로고
    • Avoiding overfitting caused by noise using a uniform training mode
    • July
    • Z.P. Liu and J.P. Castagna, "Avoiding overfitting caused by noise using a uniform training mode," Int'l Joint Conf. on Neural Networks, vol.3, pp.1788-1793, July 1999.
    • (1999) Int'l Joint Conf. on Neural Networks , vol.3 , pp. 1788-1793
    • Liu, Z.P.1    Castagna, J.P.2
  • 10
    • 85105809948 scopus 로고    scopus 로고
    • Inductive learning algorithms and representations for text categorization
    • Information and Knowledge Management
    • S. Dumais, J. Platt, and D. Heckerman, "Inductive learning algorithms and representations for text categorization," Proc. Int'l Conf. Information and Knowledge Management, vol.3, pp.148-154, 1998.
    • (1998) Proc. Int'l Conf , vol.3 , pp. 148-154
    • Dumais, S.1    Platt, J.2    Heckerman, D.3
  • 11
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • March
    • C.W. Hsu and C.J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol.13, no.2, pp.415-425, March 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 12
    • 6344228301 scopus 로고    scopus 로고
    • A comparison among four svm classification methods: Lsvm, nlsvm, ssvm and nsvm
    • Aug
    • S.X. Lu and X.Z. Wang, "A comparison among four svm classification methods: Lsvm, nlsvm, ssvm and nsvm," Proc. Int'l Conf. on Machine Learning and Cybernetics, pp.4277-4282, Aug. 2004.
    • (2004) Proc. Int'l Conf. on Machine Learning and Cybernetics , pp. 4277-4282
    • Lu, S.X.1    Wang, X.Z.2
  • 13
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims, "Text categorization with support vector machines: Learning with many relevant features," Proc. Eur. Conf. Machine Learning, pp.137-142, 1998.
    • (1998) Proc. Eur. Conf. Machine Learning , pp. 137-142
    • Joachims, T.1
  • 14
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol.46, no.1, pp.131-159, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 16
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of svm hyperparameters using radius/margin bound and iterative algorithms
    • Sept
    • S.S. Keerthi, "Efficient tuning of svm hyperparameters using radius/margin bound and iterative algorithms," IEEE Trans. Neural Netw., vol.13, no.5, pp.1225-1229, Sept. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 17
    • 0034187311 scopus 로고    scopus 로고
    • Classification ability of single hidden layer feedforward neural networks
    • May
    • G.B. Huang, Y.Q. Chen, and H.A. Babri, "Classification ability of single hidden layer feedforward neural networks," IEEE Trans. Neural Netw., vol.11, no.3, pp.799-801, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.3 , pp. 799-801
    • Huang, G.B.1    Chen, Y.Q.2    Babri, H.A.3
  • 18
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol.70, pp.489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 21
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • N.Y. Liang, G.B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol.17, no.6, pp.1411-1423, 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 22
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • March
    • P.L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol.44, no.2, pp.525-536, March 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 23
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed, Johns Hopkins University Press, Baltimore, MD, USA
    • G.H. Golub and C.F.V. Loan, Matrix computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, USA, 1996.
    • (1996) Matrix computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 25
    • 0036085860 scopus 로고    scopus 로고
    • A new incremental method for function approximation using feedforward neural networks
    • E. Romero and R. Alquézar, "A new incremental method for function approximation using feedforward neural networks," Proc. INNS-IEEE Int'l Joint Conf. on Neural Networks, pp.1968-1973, 2002.
    • (2002) Proc. INNS-IEEE Int'l Joint Conf. on Neural Networks , pp. 1968-1973
    • Romero, E.1    Alquézar, R.2
  • 28
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for probabilistic rbf network
    • July
    • C. Constantinopoulos and A. Likas, "An incremental training method for probabilistic rbf network," IEEE Trans. Neural Netw., vol.17, no.4, pp.966-974, July 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.2
  • 29
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks
    • G.B. Huang, P. Saratchandran, and N. Sundararajan, "An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks," IEEE Trans. Syst., Man Cybern. B, Cybern., vol.34, no.6, pp.2284-2292, 2004.
    • (2004) IEEE Trans. Syst., Man Cybern. B, Cybern , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 31
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm
    • March
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm," IEEE Trans. Neural Netw., vol.9, no.2, pp.308-318, March 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.