메뉴 건너뛰기




Volumn 20, Issue 11, 2008, Pages 2745-2756

Just-in-time connectivity for large spiking networks

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; HUMAN; INFORMATION PROCESSING; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; SYNAPSE; TIME;

EID: 55749104361     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.10-07-622     Document Type: Article
Times cited : (26)

References (19)
  • 1
    • 0025780592 scopus 로고
    • Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction
    • Bartol, T. M., Jr., Land, B. R., Salpeter, E. E., & Salpeter, M. M. (1991). Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys. J., 59, 1290-1307.
    • (1991) Biophys. J , vol.59 , pp. 1290-1307
    • Bartol Jr., T.M.1    Land, B.R.2    Salpeter, E.E.3    Salpeter, M.M.4
  • 4
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295, 1664-1669.
    • (2002) Science , vol.295 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 5
    • 0035080096 scopus 로고    scopus 로고
    • Neuron: A tool for neuroscientists
    • Hines, M. L., & Carnevale, N. T. (2001). Neuron: A tool for neuroscientists. Neuroscientist, 7, 123-135.
    • (2001) Neuroscientist , vol.7 , pp. 123-135
    • Hines, M.L.1    Carnevale, N.T.2
  • 6
    • 2542452927 scopus 로고    scopus 로고
    • Discrete event simulation in the neuron environment
    • Hines, M. L., & Carnevale, N. T. (2004). Discrete event simulation in the neuron environment. Neurocomputing, 58, 1117-1122.
    • (2004) Neurocomputing , vol.58 , pp. 1117-1122
    • Hines, M.L.1    Carnevale, N.T.2
  • 7
    • 42149192537 scopus 로고    scopus 로고
    • Large-scale model of mammalian thalamocortical systems
    • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proc. Nat. Acad. Sci. USA, 105, 3593-3598.
    • (2008) Proc. Nat. Acad. Sci. USA , vol.105 , pp. 3593-3598
    • Izhikevich, E.M.1    Edelman, G.M.2
  • 8
    • 0030115144 scopus 로고    scopus 로고
    • Optimizing synaptic conductance calculation for network simulations
    • Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501-510.
    • (1996) Neural Computation , vol.8 , pp. 501-510
    • Lytton, W.W.1
  • 11
    • 17044361819 scopus 로고    scopus 로고
    • Independent variable timestep integration of individual neurons for network simulations
    • Lytton, W. W., & Hines, M. (2005). Independent variable timestep integration of individual neurons for network simulations. Neural Computation, 17, 903-921.
    • (2005) Neural Computation , vol.17 , pp. 903-921
    • Lytton, W.W.1    Hines, M.2
  • 12
    • 34247158585 scopus 로고    scopus 로고
    • Tonic-clonic transitions in computer simulation
    • Lytton, W. W., & Omurtag, A. (2007). Tonic-clonic transitions in computer simulation. J. Clinical Neurophys, 24, 175-181.
    • (2007) J. Clinical Neurophys , vol.24 , pp. 175-181
    • Lytton, W.W.1    Omurtag, A.2
  • 13
    • 34247102069 scopus 로고    scopus 로고
    • A rule-based firing model for neural networks
    • Lytton, W. W., & Stewart, M. (2005). A rule-based firing model for neural networks. Int. J. Bioelectromagnetism, 7, 47-50.
    • (2005) Int. J. Bioelectromagnetism , vol.7 , pp. 47-50
    • Lytton, W.W.1    Stewart, M.2
  • 14
    • 33748638404 scopus 로고    scopus 로고
    • Rule-based firing for network simulations
    • Lytton, W. W., & Stewart, M. (2006). Rule-based firing for network simulations. Neurocomputing, 69, 1160-1164.
    • (2006) Neurocomputing , vol.69 , pp. 1160-1164
    • Lytton, W.W.1    Stewart, M.2
  • 15
    • 0038454630 scopus 로고    scopus 로고
    • A discrete-event neural network simulator for general neuron models
    • Makino, T. (2003). A discrete-event neural network simulator for general neuron models. Neural Computing and Applications, 11, 210-223.
    • (2003) Neural Computing and Applications , vol.11 , pp. 210-223
    • Makino, T.1
  • 16
    • 0034296490 scopus 로고    scopus 로고
    • Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses
    • Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305-2329.
    • (2000) Neural Computation , vol.12 , pp. 2305-2329
    • Mattia, M.1    Del Giudice, P.2
  • 18
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete-time neural network simulations
    • Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47-79.
    • (2007) Neural Computation , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.E.3    Diesmann, M.4
  • 19
    • 0037907084 scopus 로고
    • Event-driven simulation of networks of spiking neurons
    • J. D. Cowan, G. Tesauro, & J. Alspector Eds, San Francisco: Morgan Kaufmann
    • Watts, L. (1994). Event-driven simulation of networks of spiking neurons. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 927-934). San Francisco: Morgan Kaufmann.
    • (1994) Advances in neural information processing systems , vol.6 , pp. 927-934
    • Watts, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.