-
1
-
-
84966230222
-
Iteration methods for finding all zeros of a polynomial simultaneously
-
Aberth O. Iteration methods for finding all zeros of a polynomial simultaneously. Mathematics and Computation 27 (1973) 339-344
-
(1973)
Mathematics and Computation
, vol.27
, pp. 339-344
-
-
Aberth, O.1
-
2
-
-
55749095069
-
-
A. Akritas, A new look at one of the Bisection Methods derived from Vincent's theorem or There is no Descartes' method. http://inf-server.inf.uth.gr/~akritas/articles/71.pdf
-
A. Akritas, A new look at one of the Bisection Methods derived from Vincent's theorem or There is no Descartes' method. http://inf-server.inf.uth.gr/~akritas/articles/71.pdf
-
-
-
-
3
-
-
55749114806
-
-
A. Akritas, A. Bocharov, A. Strzeboński, Implementation of real root isolation algorithms in Mathematica, in: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering, Interval'94, St. Petersburg, Russia, March 7-10 1994, pp. 23-27
-
A. Akritas, A. Bocharov, A. Strzeboński, Implementation of real root isolation algorithms in Mathematica, in: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering, Interval'94, St. Petersburg, Russia, March 7-10 1994, pp. 23-27
-
-
-
-
4
-
-
55749089431
-
-
A.G. Akritas, Vincent's theorem in algebraic manipulation, Ph.D. Thesis, Operations Research Program, North Carolina State University, Raleigh, NC, 1978
-
A.G. Akritas, Vincent's theorem in algebraic manipulation, Ph.D. Thesis, Operations Research Program, North Carolina State University, Raleigh, NC, 1978
-
-
-
-
6
-
-
55749113741
-
Improving the performance of the continued fractions method using new bounds of positive roots
-
Akritas A.G., Strzeboński A., and Vigklas P. Improving the performance of the continued fractions method using new bounds of positive roots. Nonlinear Analysis: Modelling and Control 13 3 (2008) 265-279
-
(2008)
Nonlinear Analysis: Modelling and Control
, vol.13
, Issue.3
, pp. 265-279
-
-
Akritas, A.G.1
Strzeboński, A.2
Vigklas, P.3
-
7
-
-
33845642703
-
Implementations of a new theorem for computing bounds for positive roots of polynomials
-
Published online
-
Akritas A.G., Strzeboński A., and Vigklas P. Implementations of a new theorem for computing bounds for positive roots of polynomials. Computing 78 (2006) 355-367 Published online
-
(2006)
Computing
, vol.78
, pp. 355-367
-
-
Akritas, A.G.1
Strzeboński, A.2
Vigklas, P.3
-
10
-
-
0034396488
-
Design, analysis, and implementation of a multiprecision polynomial rootfinder
-
Package available at: http://www.dm.unipi.it/cluster-pages/mpsolve/index.htm
-
Bini D.A., and Fiorentino G. Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms 23 (2000) 127-173. http://www.dm.unipi.it/cluster-pages/mpsolve/index.htm Package available at: http://www.dm.unipi.it/cluster-pages/mpsolve/index.htm
-
(2000)
Numerical Algorithms
, vol.23
, pp. 127-173
-
-
Bini, D.A.1
Fiorentino, G.2
-
12
-
-
55749092821
-
-
J.H. Davenport, Computer algebra for cylindrical algebraic decomposition, Technical Report, The Royal Institute of Technology, Department of Numerical Analysis and Computing Science, S-100 44, Stockholm, Sweden, 1985. Reprinted as: Tech. Rep. 88-10, School of Math. Sciences, U. of Bath, Bath, England. http://www.bath.ac.uk/~masjhd/TRITA.pdf
-
J.H. Davenport, Computer algebra for cylindrical algebraic decomposition, Technical Report, The Royal Institute of Technology, Department of Numerical Analysis and Computing Science, S-100 44, Stockholm, Sweden, 1985. Reprinted as: Tech. Rep. 88-10, School of Math. Sciences, U. of Bath, Bath, England. http://www.bath.ac.uk/~masjhd/TRITA.pdf
-
-
-
-
13
-
-
55749087032
-
-
Z. Du, V. Sharma, C. Yap, Amortized bounds for root isolation via Sturm sequences, in: D. Wang and L. Zhi (Eds.), Proc. Int'l Workshop on Symbolic-Numeric Computation, School of Science, Beihang University, Beijing, China, 2005, pp. 81-93
-
Z. Du, V. Sharma, C. Yap, Amortized bounds for root isolation via Sturm sequences, in: D. Wang and L. Zhi (Eds.), Proc. Int'l Workshop on Symbolic-Numeric Computation, School of Science, Beihang University, Beijing, China, 2005, pp. 81-93
-
-
-
-
14
-
-
55749104103
-
-
A. Eigenwillig, Real root isolation for exact and approximate polynomials using Descartes' rule of signs, Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2008
-
A. Eigenwillig, Real root isolation for exact and approximate polynomials using Descartes' rule of signs, Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2008
-
-
-
-
15
-
-
33748959696
-
-
A. Eigenwillig, V. Sharma, C. Yap, Almost tight complexity bounds for the Descartes method, in: Proc. 2006 Int'l Symp. Symbolic and Algebraic Computation, ISSAC'06, Genova, Italy, 2006
-
A. Eigenwillig, V. Sharma, C. Yap, Almost tight complexity bounds for the Descartes method, in: Proc. 2006 Int'l Symp. Symbolic and Algebraic Computation, ISSAC'06, Genova, Italy, 2006
-
-
-
-
16
-
-
46749147512
-
Real algebraic numbers: Complexity analysis and experimentation
-
Reliable Implementation of Real Number Algorithms: Theory and Practice. Hertling P., Hoffmann C.M., Luther W., and Revol N. (Eds), Springer Available as Research Report 5897, INRIA. http://www.inria.fr/rrrt/rr-5897.html
-
Emiris I.Z., Mourrain B., and Tsigaridas E.P. Real algebraic numbers: Complexity analysis and experimentation. In: Hertling P., Hoffmann C.M., Luther W., and Revol N. (Eds). Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science vol. 5045 (2006), Springer. http://www.inria.fr/rrrt/rr-5897.html Available as Research Report 5897, INRIA. http://www.inria.fr/rrrt/rr-5897.html
-
(2006)
Lecture Notes in Computer Science
, vol.5045
-
-
Emiris, I.Z.1
Mourrain, B.2
Tsigaridas, E.P.3
-
17
-
-
0032066673
-
Bounds for absolute positiveness of multivariate polynomials
-
Hong H. Bounds for absolute positiveness of multivariate polynomials. Journal of Symbolic Computation 25 5 (1998) 571-585
-
(1998)
Journal of Symbolic Computation
, vol.25
, Issue.5
, pp. 571-585
-
-
Hong, H.1
-
20
-
-
0008526410
-
Isolierung reeller Nullstellen von Polynomen
-
Herzberger J. (Ed), Akademie-Verlag, Berlin
-
Krandick W. Isolierung reeller Nullstellen von Polynomen. In: Herzberger J. (Ed). Wissenschaftliches Rechnen (1995), Akademie-Verlag, Berlin 105-154
-
(1995)
Wissenschaftliches Rechnen
, pp. 105-154
-
-
Krandick, W.1
-
25
-
-
29644436488
-
Note on Vincent's theorem
-
Ostrowski A. Note on Vincent's theorem. The Annals of Mathematics 52 3 (1950) 702-707
-
(1950)
The Annals of Mathematics
, vol.52
, Issue.3
, pp. 702-707
-
-
Ostrowski, A.1
-
26
-
-
84956238657
-
Rational approximations to algebraic numbers
-
Roth K. Rational approximations to algebraic numbers. Mathematika 2 (1955) 160-167
-
(1955)
Mathematika
, vol.2
, pp. 160-167
-
-
Roth, K.1
-
27
-
-
84968518217
-
Polynomial minimum root separation
-
Rump S.M. Polynomial minimum root separation. Math. Comp. 33 (1979) 327-336
-
(1979)
Math. Comp.
, vol.33
, pp. 327-336
-
-
Rump, S.M.1
-
28
-
-
55749101234
-
-
V. Sharma, Complexity analysis of algorithms in algebraic computation, Ph.D. Thesis, Dept. of Computer Science, NYU, January 2007
-
V. Sharma, Complexity analysis of algorithms in algebraic computation, Ph.D. Thesis, Dept. of Computer Science, NYU, January 2007
-
-
-
-
30
-
-
30844442593
-
New bounds for the positive roots of polynomials
-
Ştefǎnescu D. New bounds for the positive roots of polynomials. Journal of Universal Computer Science 11 12 (2005) 2132-2141
-
(2005)
Journal of Universal Computer Science
, vol.11
, Issue.12
, pp. 2132-2141
-
-
Ştefǎnescu, D.1
-
31
-
-
33750734361
-
Univariate polynomial real root isolation: Continued fractions revisited
-
Proc. 13th European Symp. on Algorithms. Azar Y., and Erlebach T. (Eds). ESA, Springer
-
Tsigaridas E.P., and Emiris I.Z. Univariate polynomial real root isolation: Continued fractions revisited. In: Azar Y., and Erlebach T. (Eds). Proc. 13th European Symp. on Algorithms. ESA. LNCS vol. 4168 (2006), Springer 817-828
-
(2006)
LNCS
, vol.4168
, pp. 817-828
-
-
Tsigaridas, E.P.1
Emiris, I.Z.2
-
32
-
-
39149138443
-
On the complexity of real root isolation using continued fractions
-
Tsigaridas E.P., and Emiris I.Z. On the complexity of real root isolation using continued fractions. Theoretical Computer Science 392 1-3 (2008) 158-173
-
(2008)
Theoretical Computer Science
, vol.392
, Issue.1-3
, pp. 158-173
-
-
Tsigaridas, E.P.1
Emiris, I.Z.2
|