메뉴 건너뛰기




Volumn 22, Issue 1, 2009, Pages 45-51

Positive solutions for third-order three-point nonhomogeneous boundary value problems

Author keywords

Existence and nonexistence; Fixed point theorem; Nonhomogeneous; Positive solutions; Third order three point BVPs

Indexed keywords

BOUNDARY VALUE PROBLEMS; DIFFERENTIAL EQUATIONS; INITIAL VALUE PROBLEMS; ORDINARY DIFFERENTIAL EQUATIONS; TERNARY SYSTEMS;

EID: 55649121388     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2008.02.002     Document Type: Article
Times cited : (60)

References (17)
  • 1
    • 0032031149 scopus 로고    scopus 로고
    • Multiple positive solutions for a three-point boundary value problem
    • Anderson D. Multiple positive solutions for a three-point boundary value problem. Math. Comput. Modelling 27 (1998) 49-57
    • (1998) Math. Comput. Modelling , vol.27 , pp. 49-57
    • Anderson, D.1
  • 2
    • 0346903378 scopus 로고    scopus 로고
    • Green's function for a third-order generalized right focal problem
    • Anderson D. Green's function for a third-order generalized right focal problem. J. Math. Anal. Appl. 288 (2003) 1-14
    • (2003) J. Math. Anal. Appl. , vol.288 , pp. 1-14
    • Anderson, D.1
  • 3
    • 0036501601 scopus 로고    scopus 로고
    • Multiple solutions and eigenvalues for third-order right focal boundary value problems
    • Anderson D., and Davis J.M. Multiple solutions and eigenvalues for third-order right focal boundary value problems. J. Math. Anal. Appl. 267 (2002) 135-157
    • (2002) J. Math. Anal. Appl. , vol.267 , pp. 135-157
    • Anderson, D.1    Davis, J.M.2
  • 4
    • 33747061598 scopus 로고    scopus 로고
    • Existence of triple positive solutions for a third order generalized right focal problem
    • Bai Z., and Fei X. Existence of triple positive solutions for a third order generalized right focal problem. Math. Inequal. Appl. 9 (2006) 437-444
    • (2006) Math. Inequal. Appl. , vol.9 , pp. 437-444
    • Bai, Z.1    Fei, X.2
  • 5
    • 34250646611 scopus 로고    scopus 로고
    • Nonlinear three-point third order boundary value problems
    • Boucherif A., and Al-Malki N. Nonlinear three-point third order boundary value problems. Appl. Math. Comput. 190 (2007) 1168-1177
    • (2007) Appl. Math. Comput. , vol.190 , pp. 1168-1177
    • Boucherif, A.1    Al-Malki, N.2
  • 6
    • 33845567584 scopus 로고    scopus 로고
    • Positive solutions for the nonhomogeneous three-point boundary value problem of second-order differential equations
    • Chen H. Positive solutions for the nonhomogeneous three-point boundary value problem of second-order differential equations. Math. Comput. Modelling 45 (2007) 844-852
    • (2007) Math. Comput. Modelling , vol.45 , pp. 844-852
    • Chen, H.1
  • 7
    • 55649119259 scopus 로고    scopus 로고
    • J.R. Graef, Bo Yang, Multiple positive solutions to a three point third order boundary value problem, Discrete Contin. Dyn. Syst. 2005 (Suppl.) 1-8
    • J.R. Graef, Bo Yang, Multiple positive solutions to a three point third order boundary value problem, Discrete Contin. Dyn. Syst. 2005 (Suppl.) 1-8
  • 8
    • 0035422798 scopus 로고    scopus 로고
    • Existence result for some third order separated boundary value problems
    • Grossinho M.R., and Minhos F.M. Existence result for some third order separated boundary value problems. Nonlinear. Anal. 47 (2001) 2407-2418
    • (2001) Nonlinear. Anal. , vol.47 , pp. 2407-2418
    • Grossinho, M.R.1    Minhos, F.M.2
  • 10
    • 40749136340 scopus 로고    scopus 로고
    • Existence of positive solution for nonlinear third-order three-point boundary value problem
    • Guo L., Sun J., and Zhao Y. Existence of positive solution for nonlinear third-order three-point boundary value problem. Nonlinear. Anal. 68 10 (2008) 3151-3158
    • (2008) Nonlinear. Anal. , vol.68 , Issue.10 , pp. 3151-3158
    • Guo, L.1    Sun, J.2    Zhao, Y.3
  • 11
    • 4243074079 scopus 로고    scopus 로고
    • Multi-point boundary value problems of second-order differential equations (I)
    • Kong L., and Kong Q. Multi-point boundary value problems of second-order differential equations (I). Nonlinear. Anal. 58 (2004) 909-931
    • (2004) Nonlinear. Anal. , vol.58 , pp. 909-931
    • Kong, L.1    Kong, Q.2
  • 12
    • 55649088145 scopus 로고    scopus 로고
    • Multi-point boundary value problems of second-order differential equations (II)
    • Kong L., and Kong Q. Multi-point boundary value problems of second-order differential equations (II). Comm. Appl. Nonlinear. Anal. 14 (2007) 93-111
    • (2007) Comm. Appl. Nonlinear. Anal. , vol.14 , pp. 93-111
    • Kong, L.1    Kong, Q.2
  • 14
    • 0000897074 scopus 로고    scopus 로고
    • Positive solutions for a second order three-point boundary-value problems
    • Ma R. Positive solutions for a second order three-point boundary-value problems. Appl. Math. Lett. 14 (2001) 1-5
    • (2001) Appl. Math. Lett. , vol.14 , pp. 1-5
    • Ma, R.1
  • 15
    • 22944454491 scopus 로고    scopus 로고
    • Positive solutions of singular third-order three-point boundary value problems
    • Sun Y. Positive solutions of singular third-order three-point boundary value problems. J. Math. Anal. Appl. 306 (2005) 589-603
    • (2005) J. Math. Anal. Appl. , vol.306 , pp. 589-603
    • Sun, Y.1
  • 16
    • 22944440188 scopus 로고    scopus 로고
    • The existence and multiplicity of positive solutions for a third-order three-point boundary value problem
    • Yao Q. The existence and multiplicity of positive solutions for a third-order three-point boundary value problem. Acta Math. Appl. Sin. 19 (2003) 117-122
    • (2003) Acta Math. Appl. Sin. , vol.19 , pp. 117-122
    • Yao, Q.1
  • 17
    • 10044297353 scopus 로고    scopus 로고
    • Multiple positive solutions to third-order three-point singular semipositone boundary value problem
    • Yu H., Lü H., and Liu Y. Multiple positive solutions to third-order three-point singular semipositone boundary value problem. Proc. Indian Acad. Sci. Math. Sci. 114 (2004) 409-422
    • (2004) Proc. Indian Acad. Sci. Math. Sci. , vol.114 , pp. 409-422
    • Yu, H.1    Lü, H.2    Liu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.