메뉴 건너뛰기




Volumn 37, Issue 3, 2008, Pages 336-366

A posteriori error estimates for parabolic variational inequalities

Author keywords

A posteriori error estimates; Adaptive mesh refinement; Finite element methods; Parabolic obstacle problems

Indexed keywords

A POSTERIORI ERROR ESTIMATES; ADAPTIVE MESH REFINEMENT; ENERGY NORMS; ERROR INDICATORS; EULER IMPLICIT; FINITE ELEMENTS; LOCALIZATION PROPERTIES; NUMERICAL EXAMPLES; OBSTACLE PROBLEMS; PARABOLIC OBSTACLE PROBLEMS; PARABOLIC VARIATIONAL INEQUALITIES; PIECE WISE AFFINES;

EID: 55649120014     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10915-008-9215-7     Document Type: Article
Times cited : (16)

References (17)
  • 1
    • 21644485033 scopus 로고    scopus 로고
    • A posteriori analysis of the finite element discretization of some parabolic equations
    • 251. (electronic)
    • A. Bergam C. Bernardi Z. Mghazli 2005 A posteriori analysis of the finite element discretization of some parabolic equations Math. Comput. 74 251 1117 1138 (electronic)
    • (2005) Math. Comput. , vol.74 , pp. 1117-1138
    • Bergam, A.1    Bernardi, C.2    Mghazli, Z.3
  • 2
    • 2442452617 scopus 로고    scopus 로고
    • Adaptive finite element methods with convergence rates
    • 2
    • P. Binev W. Dahmen R. DeVore 2004 Adaptive finite element methods with convergence rates Numer. Math. 97 2 219 268
    • (2004) Numer. Math. , vol.97 , pp. 219-268
    • Binev, P.1    Dahmen, W.2    Devore, R.3
  • 3
    • 0034383447 scopus 로고    scopus 로고
    • Residual type a posteriori error estimates for elliptic obstacle problems
    • 4
    • Z. Chen R.H. Nochetto 2000 Residual type a posteriori error estimates for elliptic obstacle problems Numer. Math. 84 4 527 548
    • (2000) Numer. Math. , vol.84 , pp. 527-548
    • Chen, Z.1    Nochetto, R.H.2
  • 4
    • 8544220284 scopus 로고
    • Basic error estimates for elliptic problems
    • North-Holland Amsterdam
    • Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17-351. North-Holland, Amsterdam (1991)
    • (1991) Handbook of Numerical Analysis , vol.2 , pp. 17-351
    • Ciarlet, P.G.1
  • 6
    • 0026106415 scopus 로고
    • Adaptive finite element methods for parabolic problems. I. A linear model problem
    • 1
    • K. Eriksson C. Johnson 1991 Adaptive finite element methods for parabolic problems. I. A linear model problem SIAM J. Numer. Anal. 28 1 43 77
    • (1991) SIAM J. Numer. Anal. , vol.28 , pp. 43-77
    • Eriksson, K.1    Johnson, C.2
  • 9
    • 0041657515 scopus 로고    scopus 로고
    • The primal-dual active set strategy as a semismooth Newton method
    • 3. (electronic)
    • M. Hintermüller K. Ito K. Kunisch 2003 The primal-dual active set strategy as a semismooth Newton method SIAM J. Optim. 13 3 865 888 (electronic)
    • (2003) SIAM J. Optim. , vol.13 , pp. 865-888
    • Hintermüller, M.1    Ito, K.2    Kunisch, K.3
  • 10
    • 0028420070 scopus 로고
    • Adaptive multilevel methods for obstacle problems
    • 2
    • R.H.W. Hoppe R. Kornhuber 1994 Adaptive multilevel methods for obstacle problems SIAM J. Numer. Anal. 31 2 301 323
    • (1994) SIAM J. Numer. Anal. , vol.31 , pp. 301-323
    • Hoppe, R.H.W.1    Kornhuber, R.2
  • 11
    • 0037261943 scopus 로고    scopus 로고
    • Semi-smooth Newton methods for variational inequalities of the first kind
    • 1
    • K. Ito K. Kunisch 2003 Semi-smooth Newton methods for variational inequalities of the first kind M2AN Math. Model. Numer. Anal. 37 1 41 62
    • (2003) M2AN Math. Model. Numer. Anal. , vol.37 , pp. 41-62
    • Ito, K.1    Kunisch, K.2
  • 12
    • 0000402458 scopus 로고
    • Adaptive finite element methods for the obstacle problem
    • 4
    • C. Johnson 1992 Adaptive finite element methods for the obstacle problem Math. Models Methods Appl. Sci. 2 4 483 487
    • (1992) Math. Models Methods Appl. Sci. , vol.2 , pp. 483-487
    • Johnson, C.1
  • 13
    • 0030128859 scopus 로고    scopus 로고
    • A posteriori error estimates for elliptic variational inequalities
    • 8
    • R. Kornhuber 1996 A posteriori error estimates for elliptic variational inequalities Comput. Math. Appl. 31 8 49 60
    • (1996) Comput. Math. Appl. , vol.31 , pp. 49-60
    • Kornhuber, R.1
  • 14
    • 0041411640 scopus 로고    scopus 로고
    • Pointwise a posteriori error control for elliptic obstacle problems
    • 1
    • R.H. Nochetto K.G. Siebert A. Veeser 2003 Pointwise a posteriori error control for elliptic obstacle problems Numer. Math. 95 1 163 195
    • (2003) Numer. Math. , vol.95 , pp. 163-195
    • Nochetto, R.H.1    Siebert, K.G.2    Veeser, A.3
  • 15
    • 27744463727 scopus 로고    scopus 로고
    • Fully localized a posteriori error estimators and barrier sets for contact problems
    • 5. (electronic)
    • R.H. Nochetto K.G. Siebert A. Veeser 2005 Fully localized a posteriori error estimators and barrier sets for contact problems SIAM J. Numer. Anal. 42 5 2118 2135 (electronic)
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 2118-2135
    • Nochetto, R.H.1    Siebert, K.G.2    Veeser, A.3
  • 16
    • 0035733517 scopus 로고    scopus 로고
    • Efficient and reliable a posteriori error estimators for elliptic obstacle problems
    • 1. (electronic)
    • A. Veeser 2001 Efficient and reliable a posteriori error estimators for elliptic obstacle problems SIAM J. Numer. Anal. 39 1 146 167 (electronic)
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 146-167
    • Veeser, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.