메뉴 건너뛰기




Volumn 121, Issue 4, 2008, Pages 395-431

Hermitian spectral theory and blow-up patterns for a fourth-order semilinear boussinesq equation

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL OPERATORS; POLYNOMIALS; WATER WAVES; WAVE EQUATIONS;

EID: 55649110251     PISSN: 00222526     EISSN: 14679590     Source Type: Journal    
DOI: 10.1111/j.1467-9590.2008.00421.x     Document Type: Article
Times cited : (5)

References (56)
  • 1
    • 0003753185 scopus 로고
    • Blow-up for Nonlinear Hyperbolic Equations
    • Boston/Berlin
    • S. Alinhac, Blow-up for Nonlinear Hyperbolic Equations, Birkhäuser, Boston/Berlin, 1995.
    • (1995) Birkhäuser
    • Alinhac, S.1
  • 2
    • 84980086490 scopus 로고
    • Local behaviour of solutions of general linear elliptic equations
    • L. Bers, Local behaviour of solutions of general linear elliptic equations, Comm. Pure Appl. Math. 8 : 473 496 (1955).
    • (1955) Comm. Pure Appl. Math. , vol.8 , pp. 473-496
    • Bers, L.1
  • 4
    • 55349086284 scopus 로고    scopus 로고
    • Self-similar solutions of semilinear wave equations with a focusing nonlinearity
    • and.
    • R. Bizon, D. Maison, and A. Wasserman, Self-similar solutions of semilinear wave equations with a focusing nonlinearity, Nonlinearity 20 : 2061 2074 (2007).
    • (2007) Nonlinearity , vol.20 , pp. 2061-2074
    • Bizon, R.1    Maison, D.2    Wasserman, A.3
  • 5
    • 33746680421 scopus 로고    scopus 로고
    • Stability and spectra of blow-up in problems with quasi-linear gradient diffusivity
    • and.
    • C. Budd and V. Galaktionov, Stability and spectra of blow-up in problems with quasi-linear gradient diffusivity, Proc. Roy. Soc. London A 454 : 2371 2407 (1998).
    • (1998) Proc. Roy. Soc. London A , vol.454 , pp. 2371-2407
    • Budd, C.1    Galaktionov, V.2
  • 6
    • 0002234036 scopus 로고
    • Differentiability of the blow-up curve for one dimensional nonlinear wave equations
    • and.
    • L. A. Caffarelli and A. Friedman, Differentiability of the blow-up curve for one dimensional nonlinear wave equations, Arch. Rational Mech. Anal. 91 : 83 98 (1985).
    • (1985) Arch. Rational Mech. Anal. , vol.91 , pp. 83-98
    • Caffarelli, L.A.1    Friedman, A.2
  • 7
    • 84967773646 scopus 로고
    • The blow-up boundary for nonlinear wave equations
    • and.
    • L. A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc. 297 : 223 241 (1986).
    • (1986) Trans. Amer. Math. Soc. , vol.297 , pp. 223-241
    • Caffarelli, L.A.1    Friedman, A.2
  • 8
    • 0032328374 scopus 로고    scopus 로고
    • A strong unique continuation theorem for parabolic equations
    • X.-Y. Chen, A strong unique continuation theorem for parabolic equations, Math. Ann. 311 : 603 630 (1998).
    • (1998) Math. Ann. , vol.311 , pp. 603-630
    • Chen, X.-Y.1
  • 9
    • 0039500619 scopus 로고    scopus 로고
    • On the scaling limits at zeros of solutions pf parabolic equations
    • X.-Y. Chen, On the scaling limits at zeros of solutions pf parabolic equations, J. Differ. Equat. 147 : 355 382 (1998).
    • (1998) J. Differ. Equat. , vol.147 , pp. 355-382
    • Chen, X.-Y.1
  • 12
    • 0021835204 scopus 로고
    • Measured-valued solutions to conservation laws
    • R. DiPerna, Measured-valued solutions to conservation laws, Arch. Ration. Mech. Anal. 88 : 223 270 (1985).
    • (1985) Arch. Ration. Mech. Anal. , vol.88 , pp. 223-270
    • Diperna, R.1
  • 13
    • 14844330148 scopus 로고    scopus 로고
    • Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range
    • and.
    • Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat. 9 : 1009 1038 (2004).
    • (2004) Adv. Differ. Equat. , vol.9 , pp. 1009-1038
    • Egorov, Y.V.1    Galaktionov, V.A.2    Kondratiev, V.A.3    Pohozaev, S.I.4
  • 14
    • 0034660768 scopus 로고    scopus 로고
    • Carleman inequalities and the heat operator
    • L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J. 104 : 113 127 (2000).
    • (2000) Duke Math. J. , vol.104 , pp. 113-127
    • Escauriaza, L.1
  • 15
    • 34247893285 scopus 로고    scopus 로고
    • Source-type solutions of the fourth-order unstable thin film equation
    • and.
    • J. D. Evans, V. A. Galaktionov, and J. R. King, Source-type solutions of the fourth-order unstable thin film equation, Euro J. Appl. Math. 18 : 273 321 (2007).
    • (2007) Euro J. Appl. Math. , vol.18 , pp. 273-321
    • Evans, J.D.1    Galaktionov, V.A.2    King, J.R.3
  • 16
    • 34547430600 scopus 로고    scopus 로고
    • Unstable sixth-order thin film equation. I. Blow-up similarity solutions; II. Global similarity patterns
    • and., 1843-1881 (
    • J. D. Evans, V. A. Galaktionov, and J. R. King, Unstable sixth-order thin film equation. I. Blow-up similarity solutions; II. Global similarity patterns, Nonlinearity 20 : 1799 1841, 1843-1881 (2007).
    • (2007) Nonlinearity , vol.20 , pp. 1799-1841
    • Evans, J.D.1    Galaktionov, V.A.2    King, J.R.3
  • 18
    • 57249088473 scopus 로고    scopus 로고
    • On a spectrum of blow-up patterns for a higher-order semilinear parabolic equations
    • V. A. Galaktionov, On a spectrum of blow-up patterns for a higher-order semilinear parabolic equations, Proc. Roy. Soc. London A 457 : 1 21 (2001).
    • (2001) Proc. Roy. Soc. London A , vol.457 , pp. 1-21
    • Galaktionov, V.A.1
  • 20
    • 54249109202 scopus 로고    scopus 로고
    • Sturmian nodal set analysis for higher-order parabolic equations and applications
    • V. A. Galaktionov, Sturmian nodal set analysis for higher-order parabolic equations and applications, Adv. Differ. Equat. 12 : 669 720 (2007).
    • (2007) Adv. Differ. Equat. , vol.12 , pp. 669-720
    • Galaktionov, V.A.1
  • 21
    • 77951110546 scopus 로고    scopus 로고
    • Shock waves and compactons for fifth-order nonlinear dispersion equations
    • submitted.
    • V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, Europ. J. Appl. Math. submitted.
    • Europ. J. Appl. Math.
    • Galaktionov, V.A.1
  • 22
    • 85153173514 scopus 로고    scopus 로고
    • Formation of shocks and fundamental solution of a fourth-order quasilinear Boussinesq-type equation
    • submitted.
    • V. A. Galaktionov, Formation of shocks and fundamental solution of a fourth-order quasilinear Boussinesq-type equation, Nonlinearity submitted.
    • Nonlinearity
    • Galaktionov, V.A.1
  • 23
    • 0141885009 scopus 로고    scopus 로고
    • On similarity solutions and blow-up spectra for a semilinear wave equation
    • and.
    • V. A. Galaktionov and S. I. Pohozaev, On similarity solutions and blow-up spectra for a semilinear wave equation, Quart. Appl. Math. 61 : 583 600 (2003).
    • (2003) Quart. Appl. Math. , vol.61 , pp. 583-600
    • Galaktionov, V.A.1    Pohozaev, S.I.2
  • 25
    • 0000244508 scopus 로고
    • Note on a theorem of Hilbert
    • G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 : 314 317 (1920).
    • (1920) Math. Z. , vol.6 , pp. 314-317
    • Hardy, G.H.1
  • 26
    • 0012483951 scopus 로고
    • Weighted norm inequalities for classes of operators
    • H. P. Heinig, Weighted norm inequalities for classes of operators, Indiana Univ. Math. J. 33 : 573 582 (1984).
    • (1984) Indiana Univ. Math. J. , vol.33 , pp. 573-582
    • Heinig, H.P.1
  • 27
    • 84959615928 scopus 로고
    • A nonlinear instability burst in plane parallel flow
    • and.
    • L. M. Hocking, K. Stewartson, and J. T. Stuart, A nonlinear instability burst in plane parallel flow, J. Fluid Mech. 51 : 705 735 (1972).
    • (1972) J. Fluid Mech. , vol.51 , pp. 705-735
    • Hocking, L.M.1    Stewartson, K.2    Stuart, J.T.3
  • 28
    • 33947126983 scopus 로고    scopus 로고
    • New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations
    • M. Inc, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals 33 : 1275 1284 (2007).
    • (2007) Chaos, Solitons and Fractals , vol.33 , pp. 1275-1284
    • Inc, M.1
  • 29
    • 31044432932 scopus 로고    scopus 로고
    • Uniqueness properties of solutions of Schrödinger equations
    • and.
    • A. D. Ionescu and C. E. Kenig, Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal. 232 : 90 236 (2006).
    • (2006) J. Funct. Anal. , vol.232 , pp. 90-236
    • Ionescu, A.D.1    Kenig, C.E.2
  • 31
    • 0000774996 scopus 로고
    • Blow-up of solutions of nonlinear wave equation in three space dimensions
    • F. John, Blow-up of solutions of nonlinear wave equation in three space dimensions, Manuscripta Math. 28 : 235 268 (1979).
    • (1979) Manuscripta Math. , vol.28 , pp. 235-268
    • John, F.1
  • 32
    • 84980153133 scopus 로고
    • Blow-up of solutions of some nonlinear hyperbolic equations
    • T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 32 : 501 505 (1980).
    • (1980) Comm. Pure Appl. Math. , vol.32 , pp. 501-505
    • Kato, T.1
  • 33
    • 0000250408 scopus 로고
    • Finite energy self-similar solutions of a nonlinear wave equation
    • and.
    • O. Kavian and F. B. Weissler, Finite energy self-similar solutions of a nonlinear wave equation, Comm. Partial Differ. Equat. 15 : 1381 1420 (1990).
    • (1990) Comm. Partial Differ. Equat. , vol.15 , pp. 1381-1420
    • Kavian, O.1    Weissler, F.B.2
  • 34
    • 0001138601 scopus 로고    scopus 로고
    • Endpoint Strichartz estimates
    • and.
    • M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 : 955 380 (1998).
    • (1998) Amer. J. Math. , vol.120 , pp. 955-380
    • Keel, M.1    Tao, T.2
  • 35
    • 84980081022 scopus 로고
    • On solutions of nonlinear wave equations
    • J. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 : 523 530 (1957).
    • (1957) Comm. Pure Appl. Math. , vol.10 , pp. 523-530
    • Keller, J.1
  • 40
    • 0003946583 scopus 로고
    • Introduction to the Spectral Theory of Polynomial Operator Pencils
    • Vol. Amer. Math. Soc., Providence, RI
    • A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon. Vol. 71, Amer. Math. Soc., Providence, RI, 1988.
    • (1988) Transl. Math. Mon. , vol.71
    • Markus, A.S.1
  • 41
    • 0003796632 scopus 로고
    • Springer-Verlag, Berlin/Tokyo
    • V. G. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin/Tokyo, 1985.
    • (1985) Sobolev Spaces
    • Maz'Ja, V.G.1
  • 43
    • 35448974487 scopus 로고    scopus 로고
    • Existence and universality of the blow-up profile for the semilinear wave equations in one space dimension
    • and.
    • F. Merle and H. Zaag, Existence and universality of the blow-up profile for the semilinear wave equations in one space dimension, J. Funct. Anal. 253 : 43 121 (2007).
    • (2007) J. Funct. Anal. , vol.253 , pp. 43-121
    • Merle, F.1    Zaag, H.2
  • 44
    • 0002047118 scopus 로고    scopus 로고
    • A Priori Estimates and Blow-up of Solutions to Nonlinear Partial ifferential Equations and Inequalities
    • and., Vol. Moscow, ISSN: 0081-5438).
    • E. Mitidieri and S. I. Pohozaev, A Priori Estimates and Blow-up of Solutions to Nonlinear Partial ifferential Equations and Inequalities, Proc. Steklov Math. Inst. 3, Vol. 234, Moscow, 2001 (ISSN: 0081-5438).
    • (2001) Proc. Steklov Math. Inst. , vol.234 , Issue.3
    • Mitidieri, E.1    Pohozaev, S.I.2
  • 49
  • 50
    • 0000546412 scopus 로고
    • Nonexistence of global solutions to semilinear wave equations in high dimensions
    • T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equat. 32 : 378 406 (1984).
    • (1984) J. Differ. Equat. , vol.32 , pp. 378-406
    • Sideris, T.C.1
  • 51
    • 0001310477 scopus 로고
    • Mémoire sur une classe d'équations à différences partielles
    • C. Sturm, Mémoire sur une classe d'équations à différences partielles, J. Math. Pures Appl. 1 : 373 444 (1836).
    • (1836) J. Math. Pures Appl. , vol.1 , pp. 373-444
    • Sturm, C.1
  • 52
    • 0000440966 scopus 로고
    • Compensated Compactness and Applications to PDEs
    • Pitman Publ. Inc., New York
    • L. Tartar, Compensated Compactness and Applications to PDEs, Research Notes in Math., Vol. 39, Pitman Publ. Inc., New York, 1979.
    • (1979) Research Notes in Math. , vol.39
    • Tartar, L.1
  • 53
    • 0001494169 scopus 로고
    • Estimates on (N - 1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation
    • J. J. L. Velazquez, Estimates on (N - 1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J. 42 : 445 476 (1993).
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 445-476
    • Velazquez, J.J.L.1
  • 54
    • 44949284030 scopus 로고
    • The space structure near a blow-up point for semilinear heat equations: A formal approach
    • and.
    • J. J. L. Velazquez, V. A. Galaktionov, and M. A. Herrero, The space structure near a blow-up point for semilinear heat equations: A formal approach, Comput. Math. Math. Phys. 31 : 46 55 (1991).
    • (1991) Comput. Math. Math. Phys. , vol.31 , pp. 46-55
    • Velazquez, J.J.L.1    Galaktionov, V.A.2    Herrero, M.A.3
  • 55
    • 34547304016 scopus 로고    scopus 로고
    • The defocusing energy-critical nonlinear Schrödinger equation in higher-dimension
    • M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher-dimension, Duke Math. J. 138 : 281 374 (2007).
    • (2007) Duke Math. J. , vol.138 , pp. 281-374
    • Visan, M.1
  • 56
    • 0038239685 scopus 로고    scopus 로고
    • Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation II. Solitary pattern solutions
    • Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation II. Solitary pattern solutions, Chaos, Solitons and Fractals 18 : 869 880 (2003).
    • (2003) Chaos, Solitons and Fractals , vol.18 , pp. 869-880
    • Yan, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.