메뉴 건너뛰기




Volumn 130, Issue 44, 2008, Pages 14891-14899

Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: Departure from chirally modified allyl metal reagents in carbonyl addition

Author keywords

[No Author keywords available]

Indexed keywords

ACIDS; ALDEHYDES; AROMATIC HYDROCARBONS; CARBONYLATION; CARBOXYLIC ACIDS; CATALYSIS; CHEMICAL OXYGEN DEMAND; HYDROGEN; HYDROGENATION; IRIDIUM COMPOUNDS; ORGANIC COMPOUNDS; OXIDATION; PHOSPHORUS COMPOUNDS; REACTION KINETICS; VANADIUM COMPOUNDS;

EID: 55549119981     PISSN: 00027863     EISSN: None     Source Type: Journal    
DOI: 10.1021/ja805722e     Document Type: Article
Times cited : (243)

References (110)
  • 1
    • 4243893500 scopus 로고
    • For reviews on enantioselective carbonyl allylation, see: a
    • For reviews on enantioselective carbonyl allylation, see: (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
    • (1993) Chem. Rev , vol.93 , pp. 2207
    • Yamamoto, Y.1    Asao, N.2
  • 11
    • 84980145665 scopus 로고    scopus 로고
    • Selected examples of chirally modified allyl metal reagents: (a) Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768.
    • Selected examples of chirally modified allyl metal reagents: (a) Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768.
  • 25
    • 0027244717 scopus 로고    scopus 로고
    • In Brown's allylation protocol (ref 3d), the stoichiometric generation of isopinocampheol frequently complicates isolation of the allylation product: (a) Ireland, R. E.; Armstrong, J. D., III; Lebreton, J.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7152.
    • In Brown's allylation protocol (ref 3d), the stoichiometric generation of isopinocampheol frequently complicates isolation of the allylation product: (a) Ireland, R. E.; Armstrong, J. D., III; Lebreton, J.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7152.
  • 32
    • 55549125075 scopus 로고    scopus 로고
    • A notable exception involves the chirally modified allyl silanes developed by Leighton (ref 31), for which highly efficient recovery of the chiral auxiliary is possible.
    • A notable exception involves the chirally modified allyl silanes developed by Leighton (ref 31), for which highly efficient recovery of the chiral auxiliary is possible.
  • 33
    • 85022536996 scopus 로고    scopus 로고
    • To our knowledge, the first examples of enantioselective Lewis acid-catalyzed carbonyl allylation were reported by Yamamoto in 1991. While additions of substituted allylic silanes gave highly optically enriched product, only a single example of the parent allylation employing allyltrimethylsilane was given, which proceeds in 55% enantiomeric excess: Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561.
    • To our knowledge, the first examples of enantioselective Lewis acid-catalyzed carbonyl allylation were reported by Yamamoto in 1991. While additions of substituted allylic silanes gave highly optically enriched product, only a single example of the parent allylation employing allyltrimethylsilane was given, which proceeds in 55% enantiomeric excess: Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561.
  • 38
    • 55549108256 scopus 로고    scopus 로고
    • For selected reviews covering carbonyl allylation via umpolung of π-allyls, see: (a) Masuyama, Y. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich, CT, 1994; 3, p 255.
    • For selected reviews covering carbonyl allylation via umpolung of π-allyls, see: (a) Masuyama, Y. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 3, p 255.
  • 44
    • 0000012889 scopus 로고
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on palladium, see: a
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on palladium, see: (a) Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 1195.
    • (1986) Tetrahedron Lett , vol.27 , pp. 1195
    • Tabuchi, T.1    Inanaga, J.2    Yamaguchi, M.3
  • 53
    • 8644248155 scopus 로고    scopus 로고
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on rhodium, see
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on rhodium, see: Masuyama, Y.; Kaneko, Y.; Kurusu, Y. Tetrahedron Lett. 2004, 45, 8969.
    • (2004) Tetrahedron Lett , vol.45 , pp. 8969
    • Masuyama, Y.1    Kaneko, Y.2    Kurusu, Y.3
  • 54
    • 24744436914 scopus 로고    scopus 로고
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on iridium, see: (a) Masuyama, Y.; Chiyo, T.; Kurusu, Y. Synlett 2005, 2251.
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on iridium, see: (a) Masuyama, Y.; Chiyo, T.; Kurusu, Y. Synlett 2005, 2251.
  • 57
    • 0002541696 scopus 로고    scopus 로고
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on ruthenium, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1989, 369, C51.
    • For catalytic carbonyl allylation via reductive coupling of π-allyls based on ruthenium, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1989, 369, C51.
  • 59
    • 0029990032 scopus 로고    scopus 로고
    • For selected examples of carbonyl allylation via catalytic Nozaki-Hiyama-Kishi coupling of allylic halides, see: (a) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533.
    • For selected examples of carbonyl allylation via catalytic Nozaki-Hiyama-Kishi coupling of allylic halides, see: (a) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533.
  • 64
    • 36749056768 scopus 로고    scopus 로고
    • For a recent review of catalytic Nozaki-Hiyama-Kishi coupling, see
    • For a recent review of catalytic Nozaki-Hiyama-Kishi coupling, see: Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407.
    • (2007) Adv. Synth. Catal , vol.349 , pp. 2407
    • Hargaden, G.C.1    Guiry, P.J.2
  • 65
    • 6744264109 scopus 로고
    • For reviews on carbonyl-ene reactions, see: a
    • For reviews on carbonyl-ene reactions, see: (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.
    • (1992) Chem. Rev , vol.92 , pp. 1021
    • Mikami, K.1    Shimizu, M.2
  • 68
    • 33646460152 scopus 로고    scopus 로고
    • For nickel catalyzed carbonyl-ene reactions, see: a
    • For nickel catalyzed carbonyl-ene reactions, see: (a) Ho, C.-Y.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 5362.
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 5362
    • Ho, C.-Y.1    Ng, S.-S.2    Jamison, T.F.3
  • 71
    • 33846995439 scopus 로고    scopus 로고
    • For selected reviews of hydrogenative C-C coupling, see: a
    • For selected reviews of hydrogenative C-C coupling, see: (a) Ngai, M.-Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063.
    • (2007) J. Org. Chem , vol.72 , pp. 1063
    • Ngai, M.-Y.1    Kong, J.-R.2    Krische, M.J.3
  • 74
    • 31444453628 scopus 로고    scopus 로고
    • For hydrogenative C=X vinylation, see: (a) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718.
    • For hydrogenative C=X vinylation, see: (a) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718.
  • 83
    • 32644453569 scopus 로고    scopus 로고
    • For hydrogenative aldol and Mannich addition, see: a
    • For hydrogenative aldol and Mannich addition, see: (a) Jung, C.-K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519.
    • (2006) Org. Lett , vol.8 , pp. 519
    • Jung, C.-K.1    Garner, S.A.2    Krische, M.J.3
  • 87
    • 33750488411 scopus 로고    scopus 로고
    • For hydrogenative acyl substitution via reductive hydroacylation, see
    • For hydrogenative acyl substitution via reductive hydroacylation, see: Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed. 2006, 128, 6885.
    • (2006) Angew. Chem., Int. Ed , vol.128 , pp. 6885
    • Hong, Y.-T.1    Barchuk, A.2    Krische, M.J.3
  • 88
    • 35548993714 scopus 로고    scopus 로고
    • For hydrogenative and transfer hydrogenative carbonyl allylations employing allenes as allyl donors, see: (a) Skucas, E, Bower, J. F, Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678
    • For hydrogenative and transfer hydrogenative carbonyl allylations employing allenes as allyl donors, see: (a) Skucas, E.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678.
  • 91
    • 43549090940 scopus 로고    scopus 로고
    • For transfer hydrogenative carbonyl allylations employing dienes as allyl donors, see: a
    • For transfer hydrogenative carbonyl allylations employing dienes as allyl donors, see: (a) Bower, J. F.; Patman, R. L.; Krische, M. J. Org. Lett. 2008, 10, 1033.
    • (2008) Org. Lett , vol.10 , pp. 1033
    • Bower, J.F.1    Patman, R.L.2    Krische, M.J.3
  • 93
    • 43949139260 scopus 로고    scopus 로고
    • For transfer hydrogenative carbonyl allylations employing allyl acetate as allyl donor, see
    • For transfer hydrogenative carbonyl allylations employing allyl acetate as allyl donor, see: Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340.
    • (2008) J. Am. Chem. Soc , vol.130 , pp. 6340
    • Kim, I.S.1    Ngai, M.-Y.2    Krische, M.J.3
  • 94
    • 34250893845 scopus 로고    scopus 로고
    • Formal substitution of alcohols by C-nucleophiles may be achieved under the conditions of hydrogen auto-transfer by way of oxidation-condensation- reduction. The alcohol-unsaturate couplings developed in our laboratory provide products of carbonyl addition, representing a formal C-H functionalization of the carbinol carbon. For recent reviews of hydrogen auto-transfer processes, see: (a) Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358.
    • Formal substitution of alcohols by C-nucleophiles may be achieved under the conditions of hydrogen auto-transfer by way of oxidation-condensation- reduction. The alcohol-unsaturate couplings developed in our laboratory provide products of carbonyl addition, representing a formal C-H functionalization of the carbinol carbon. For recent reviews of hydrogen auto-transfer processes, see: (a) Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358.
  • 98
    • 38549132389 scopus 로고    scopus 로고
    • For a review of the effects of olefinic additives on metal-catalyzed C-C coupling processes, see
    • For a review of the effects of olefinic additives on metal-catalyzed C-C coupling processes, see: Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840.
    • (2008) Angew. Chem., Int. Ed , vol.47 , pp. 840
    • Johnson, J.B.1    Rovis, T.2
  • 99
    • 37049088274 scopus 로고    scopus 로고
    • 5-iridium complexes onto m-nitrobenzoate occurs at the para-position with respect to the nitro moiety: Kisenyi, J. M.; Sunley, G. J.; Cabeza, J. A.; Smith, A. J.; Adams, H.; Salt, N. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1987, 2459.
    • 5-iridium complexes onto m-nitrobenzoate occurs at the para-position with respect to the nitro moiety: Kisenyi, J. M.; Sunley, G. J.; Cabeza, J. A.; Smith, A. J.; Adams, H.; Salt, N. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1987, 2459.
  • 105
    • 85152994915 scopus 로고    scopus 로고
    • For selected examples of carboxylate assisted cyclometalation involving other transition metal complexes, see the following. Rhodium: (a) Ito, J.-I, Nishiyama, H. Eur. J. Inorg. Chem. 2007, 1114
    • For selected examples of carboxylate assisted cyclometalation involving other transition metal complexes, see the following. Rhodium: (a) Ito, J.-I.; Nishiyama, H. Eur. J. Inorg. Chem. 2007, 1114
  • 108
    • 33845938814 scopus 로고    scopus 로고
    • Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. Carboxylate-assisted metalation of arenes exhibits acid-base character, requiring a certain level of electron deficiency at the carbon undergoing substitution. Our data suggest that cyclometalation of m-nitrobenzoic acid is especially facile due to the confluence of the following effects. The nitro moiety withdraws electron density through the π-system and the σ-framework, activating the positions ortho and para to the nitro moiety. The carboxy moiety assists ortho-metalation by reducing the entropy of activation and through enthalpic stabilization of the product through chelation.
    • (d) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. Carboxylate-assisted metalation of arenes exhibits acid-base character, requiring a certain level of electron deficiency at the carbon undergoing substitution. Our data suggest that cyclometalation of m-nitrobenzoic acid is especially facile due to the confluence of the following effects. The nitro moiety withdraws electron density through the π-system and the σ-framework, activating the positions ortho and para to the nitro moiety. The carboxy moiety assists ortho-metalation by reducing the entropy of activation and through enthalpic stabilization of the product through chelation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.