메뉴 건너뛰기




Volumn 45, Issue 3, 2008, Pages 757-778

Epidemic size in the SIS model of endemic infections

Author keywords

Epidemic; Infection; SIS

Indexed keywords


EID: 55549110924     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1222441828     Document Type: Article
Times cited : (18)

References (20)
  • 1
    • 0004245694 scopus 로고
    • ABROWOWITZ, M. AND STEGUN, I. A, eds, United States Government Printing Office, Washington, DC
    • ABROWOWITZ, M. AND STEGUN, I. A. (eds) (1972). Handbook of Mathematical Functions. United States Government Printing Office, Washington, DC.
    • (1972) Handbook of Mathematical Functions
  • 2
    • 0032268351 scopus 로고    scopus 로고
    • A threshold limit theorem for the stochastic logistic epidemic
    • ANDERSON, H. AND DJEHICHE, B. (1998). A threshold limit theorem for the stochastic logistic epidemic. J. Appl. Prob. 35, 662-670.
    • (1998) J. Appl. Prob , vol.35 , pp. 662-670
    • ANDERSON, H.1    DJEHICHE, B.2
  • 3
    • 0347185345 scopus 로고    scopus 로고
    • The role of evolution in the emergence of infectious diseases
    • ANTIA, R., REGOES, R. R., KOELLA, J. C. AND BERGSTROM, C. T. (2003). The role of evolution in the emergence of infectious diseases. Nature (London) 426, 658-661.
    • (2003) Nature (London) , vol.426 , pp. 658-661
    • ANTIA, R.1    REGOES, R.R.2    KOELLA, J.C.3    BERGSTROM, C.T.4
  • 4
    • 42749102592 scopus 로고    scopus 로고
    • Size of outbreaks near the epidemic threshold
    • BEN-NAIM, E. AND KRAPIVSKY, P. L. (2004). Size of outbreaks near the epidemic threshold. Phys. Rev. E 69, 050901.
    • (2004) Phys. Rev. E , vol.69 , pp. 050901
    • BEN-NAIM, E.1    KRAPIVSKY, P.L.2
  • 6
    • 21844433698 scopus 로고    scopus 로고
    • Extinction times for birth-death processes: Exact results, continuum asymptotics and the failure of the Fokker-Planck approximation
    • DOERING, C. R., SARGSYAN, K. V. AND SANDER, L. M. (2005). Extinction times for birth-death processes: Exact results, continuum asymptotics and the failure of the Fokker-Planck approximation. Multiscale Model. Simul. 3, 283-299.
    • (2005) Multiscale Model. Simul , vol.3 , pp. 283-299
    • DOERING, C.R.1    SARGSYAN, K.V.2    SANDER, L.M.3
  • 7
    • 34047113875 scopus 로고    scopus 로고
    • Critical scaling for the SIS stochastic epidemic
    • DOLGOARSHINNYKH, R. G. AND LALLEY, S. P. (2006). Critical scaling for the SIS stochastic epidemic. J. Appl. Prob. 43, 892-898.
    • (2006) J. Appl. Prob , vol.43 , pp. 892-898
    • DOLGOARSHINNYKH, R.G.1    LALLEY, S.P.2
  • 8
    • 41349122474 scopus 로고    scopus 로고
    • Rare event statistics in reaction-diffusion systems
    • ELGART, V. AND KAMENEV, A. (2004). Rare event statistics in reaction-diffusion systems. Phys. Rev. E 70, 041106.
    • (2004) Phys. Rev. E , vol.70 , pp. 041106
    • ELGART, V.1    KAMENEV, A.2
  • 9
    • 0002107542 scopus 로고
    • Path integration via summation of perturbation expansions and applications to totally reflecting boundaries, and potential steps
    • GROSCHE, C. (1993). Path integration via summation of perturbation expansions and applications to totally reflecting boundaries, and potential steps. Phys. Rev. Lett. 71, 1-4.
    • (1993) Phys. Rev. Lett , vol.71 , pp. 1-4
    • GROSCHE, C.1
  • 11
    • 0000998185 scopus 로고
    • A contribution to the mathematical theory of epidemics
    • KERMACK, W. O. AND MCKENDRICK, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700-721.
    • (1927) Proc. R. Soc. A , vol.115 , pp. 700-721
    • KERMACK, W.O.1    MCKENDRICK, A.G.2
  • 12
    • 34248153352 scopus 로고    scopus 로고
    • Extinction rates for fluctuation-induced metastabilities: A real-space WKB approach
    • KESSLER, D. A. AND SHNERB, M. N. (2007). Extinction rates for fluctuation-induced metastabilities: a real-space WKB approach. J. Statist. Phys. 127, 861-886.
    • (2007) J. Statist. Phys , vol.127 , pp. 861-886
    • KESSLER, D.A.1    SHNERB, M.N.2
  • 13
    • 34547221868 scopus 로고    scopus 로고
    • Solution of an infection model near threshold
    • KESSLER, D. A. AND SHNERB, M. N. (2007). Solution of an infection model near threshold. Phys. Rev. E 76, 010901.
    • (2007) Phys. Rev. E , vol.76 , pp. 010901
    • KESSLER, D.A.1    SHNERB, M.N.2
  • 14
    • 0000311552 scopus 로고
    • On the extinctions of the S-I-S stochastic logistic epidemic
    • KRYSCIO, R. J. AND LEFÉVRE, C. (1989). On the extinctions of the S-I-S stochastic logistic epidemic. J. Appl. Prob. 27, 685-694.
    • (1989) J. Appl. Prob , vol.27 , pp. 685-694
    • KRYSCIO, R.J.1    LEFÉVRE, C.2
  • 15
    • 0019412796 scopus 로고
    • The average lifetime of a population in a varying environment
    • LEIGH, E. J. (1981). The average lifetime of a population in a varying environment. J. Theoret. Biol. 90, 213-239.
    • (1981) J. Theoret. Biol , vol.90 , pp. 213-239
    • LEIGH, E.J.1
  • 16
    • 0032259304 scopus 로고    scopus 로고
    • The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier
    • MARTIN-LÖF, A. (1998). The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. J. Appl. Prob. 35, 671-682.
    • (1998) J. Appl. Prob , vol.35 , pp. 671-682
    • MARTIN-LÖF, A.1
  • 17
    • 0000635179 scopus 로고    scopus 로고
    • The quasi-stationary distribution of the closed endemic SIS model
    • NȦSELL, I. (1996). The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Prob. 28, 895-932.
    • (1996) Adv. Appl. Prob , vol.28 , pp. 895-932
    • NȦSELL, I.1
  • 19
    • 0007299336 scopus 로고
    • On the size distribution for some epidemic models
    • WATSON, R. (1980). On the size distribution for some epidemic models. J. Appl. Prob. 17, 912-921.
    • (1980) J. Appl. Prob , vol.17 , pp. 912-921
    • WATSON, R.1
  • 20
    • 0002618815 scopus 로고
    • On the asymptotic behavior of the stochastic and deterministic models of an epidemic
    • WEISS, G. H. AND DISHON, M. (1971). On the asymptotic behavior of the stochastic and deterministic models of an epidemic. Math. Biosci. 11, 261-265.
    • (1971) Math. Biosci , vol.11 , pp. 261-265
    • WEISS, G.H.1    DISHON, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.