메뉴 건너뛰기




Volumn 49, Issue 1-2, 2009, Pages 207-214

Artificial neural network modeling techniques applied to the hydrodesulfurization process

Author keywords

Hydrodesulfurization; Neural networks; Pollution; Process modeling

Indexed keywords

BACKPROPAGATION; DESULFURIZATION; FORECASTING; FOSSIL FUELS; HYDRODESULFURIZATION; IMAGE CLASSIFICATION; LEAKAGE (FLUID); METAL REFINERIES; NAPHTHAS; PETROLEUM REFINERIES; SULFUR; VEGETATION;

EID: 55549088192     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2008.05.010     Document Type: Article
Times cited : (66)

References (15)
  • 1
    • 37549067036 scopus 로고    scopus 로고
    • Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation
    • Rosales-Quintero A., Vargas-Villamil F.D., and Arce-Medina F.D. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation. Catalysis Today 130 (2008) 509-518
    • (2008) Catalysis Today , vol.130 , pp. 509-518
    • Rosales-Quintero, A.1    Vargas-Villamil, F.D.2    Arce-Medina, F.D.3
  • 2
    • 0036159603 scopus 로고    scopus 로고
    • Trickle-Bed reactor model for desulfurization and dearomatization of diesel
    • Chowdhury R., Pedernera E., and Reimert R. Trickle-Bed reactor model for desulfurization and dearomatization of diesel. AIChE J. 48 (2002) 126-135
    • (2002) AIChE J. , vol.48 , pp. 126-135
    • Chowdhury, R.1    Pedernera, E.2    Reimert, R.3
  • 3
    • 0038219687 scopus 로고    scopus 로고
    • HdPro: A mathematical model of trickle-bed reactors for the catalytic hydroprossecing of oil feedstocks
    • Avraam D.G., and Vasalos I.A. HdPro: A mathematical model of trickle-bed reactors for the catalytic hydroprossecing of oil feedstocks. Catalysis Today 79 (2003) 275-283
    • (2003) Catalysis Today , vol.79 , pp. 275-283
    • Avraam, D.G.1    Vasalos, I.A.2
  • 5
    • 0035878057 scopus 로고    scopus 로고
    • Modeling and simulation of a fixed-bed pilot-plant hydrotreater
    • Chen J., and Ring Z. Modeling and simulation of a fixed-bed pilot-plant hydrotreater. Ind. Eng. Chem. Res. 40 (2001) 3294-3300
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 3294-3300
    • Chen, J.1    Ring, Z.2
  • 6
    • 33745598825 scopus 로고    scopus 로고
    • Dynamic modeling and simulation of catalytic hydrotreating reactors
    • Mederos F.S., Rodriguez M.A., Ancheyta J., and Arce E. Dynamic modeling and simulation of catalytic hydrotreating reactors. Energy Fuels 20 (2006) 936-945
    • (2006) Energy Fuels , vol.20 , pp. 936-945
    • Mederos, F.S.1    Rodriguez, M.A.2    Ancheyta, J.3    Arce, E.4
  • 7
    • 13844253427 scopus 로고    scopus 로고
    • Modelling of the performance of industrial HDS reactors using a hybrid neural network approach
    • Bellos G.D., Kallinikos L.E., Gounaris C.E., and Papayannakos N.G. Modelling of the performance of industrial HDS reactors using a hybrid neural network approach. Chem. Eng. Process. 44 (2005) 505-515
    • (2005) Chem. Eng. Process. , vol.44 , pp. 505-515
    • Bellos, G.D.1    Kallinikos, L.E.2    Gounaris, C.E.3    Papayannakos, N.G.4
  • 8
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloh W.S., and Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943) 115-133
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloh, W.S.1    Pitts, W.2
  • 9
    • 0022471098 scopus 로고
    • Learning representations by backpropagation
    • Rumelhart D.E., McClelland J.L., and Williams R.J. Learning representations by backpropagation. Nature 323 (1986) 533-536
    • (1986) Nature , Issue.323 , pp. 533-536
    • Rumelhart, D.E.1    McClelland, J.L.2    Williams, R.J.3
  • 10
    • 0034372481 scopus 로고    scopus 로고
    • Applications of artificial neural networks in chemical engineering
    • Himmelblau D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 17 4 (2000) 373-392
    • (2000) Korean J. Chem. Eng. , vol.17 , Issue.4 , pp. 373-392
    • Himmelblau, D.M.1
  • 11
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • Rallo R., Ferré-Giné J., Arenas A., and Giralt F. Neural virtual sensor for the inferential prediction of product quality from process variables. Comput. Chem. Eng. 26 (2002) 1735-1754
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1735-1754
    • Rallo, R.1    Ferré-Giné, J.2    Arenas, A.3    Giralt, F.4
  • 12
    • 0025475020 scopus 로고
    • An introduction to neural nets
    • Baghat P. An introduction to neural nets. Chem. Eng. Prog. (1990) 55-61
    • (1990) Chem. Eng. Prog. , pp. 55-61
    • Baghat, P.1
  • 13
  • 14
    • 0028713967 scopus 로고
    • Characterization of the behavior and product distribution in fluid catalytic cracking using neural networks
    • McGreavy C., Lu M.L., Wang X.Z., and Kam E.K.T. Characterization of the behavior and product distribution in fluid catalytic cracking using neural networks. Chem. Eng. Sci. 49 24A (1994) 4717-4724
    • (1994) Chem. Eng. Sci. , vol.49 , Issue.24 A , pp. 4717-4724
    • McGreavy, C.1    Lu, M.L.2    Wang, X.Z.3    Kam, E.K.T.4
  • 15
    • 0033720244 scopus 로고    scopus 로고
    • K. Hagiwara, K. Kuno, Regularization learning and early stopping in linear networks, in: International Joint Conference on Neural Networks, IJCNN 2000, 2000, pp. 511-516
    • K. Hagiwara, K. Kuno, Regularization learning and early stopping in linear networks, in: International Joint Conference on Neural Networks, IJCNN 2000, 2000, pp. 511-516


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.