-
2
-
-
33744712217
-
-
10.1103/PhysRevB.41.9377
-
X.-G. Wen and Q. Niu, Phys. Rev. B 10.1103/PhysRevB.41.9377 41, 9377 (1990)
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9377
-
-
Wen, X.-G.1
Niu, Q.2
-
3
-
-
0000145935
-
-
10.1142/S0217979290000139
-
X.-G. Wen, Int. J. Mod. Phys. B 10.1142/S0217979290000139 4, 239 (1990)
-
(1990)
Int. J. Mod. Phys. B
, vol.4
, pp. 239
-
-
Wen, X.-G.1
-
4
-
-
1542763507
-
-
10.1080/00018739500101566
-
X.-G. Wen, Adv. Phys. 10.1080/00018739500101566 44, 405 (1995)
-
(1995)
Adv. Phys.
, vol.44
, pp. 405
-
-
Wen, X.-G.1
-
5
-
-
0037091620
-
-
10.1103/PhysRevB.65.165113
-
X.-G. Wen, Phys. Rev. B 10.1103/PhysRevB.65.165113 65, 165113 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165113
-
-
Wen, X.-G.1
-
6
-
-
33645161396
-
-
10.1103/PhysRevLett.96.110405
-
M. Levin and X.-G. Wen, Phys. Rev. Lett. 10.1103/PhysRevLett.96.110405 96, 110405 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 110405
-
-
Levin, M.1
Wen, X.-G.2
-
7
-
-
33645151438
-
-
10.1103/PhysRevLett.96.110404
-
A. Y. Kitaev and J. Preskill, Phys. Rev. Lett. 10.1103/PhysRevLett.96. 110404 96, 110404 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 110404
-
-
Kitaev, A.Y.1
Preskill, J.2
-
8
-
-
36649022667
-
-
10.1103/PhysRevB.76.184442
-
C. Castelnovo and C. Chamon, Phys. Rev. B 10.1103/PhysRevB.76.184442 76, 184442 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 184442
-
-
Castelnovo, C.1
Chamon, C.2
-
9
-
-
0037268624
-
-
10.1016/S0003-4916(02)00018-0
-
A. Y. Kitaev, Ann. Phys. (N.Y.) 10.1016/S0003-4916(02)00018-0 303, 2 (2003).
-
(2003)
Ann. Phys. (N.Y.)
, vol.303
, pp. 2
-
-
Kitaev, A.Y.1
-
10
-
-
0035981729
-
-
10.1063/1.1499754
-
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 10.1063/1.1499754 43, 4452 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 4452
-
-
Dennis, E.1
Kitaev, A.2
Landahl, A.3
Preskill, J.4
-
11
-
-
55449100638
-
-
arXiv:cond-mat/0605316 (unpublished);
-
Z. Nussinov and G. Ortiz, arXiv:cond-mat/0605316 (unpublished)
-
-
-
Nussinov, Z.1
Ortiz, G.2
-
12
-
-
55449121208
-
-
arXiv:cond-mat/0702377 (unpublished).
-
arXiv:cond-mat/0702377 (unpublished).
-
-
-
-
14
-
-
55449108186
-
-
Note that this decomposition is visible only at finite temperature, where the full Hamiltonian enters the calculations for the von Neumann entropy of the system via the density matrix. At zero temperature, the two contributions do remain distinct, but they cannot be told apart as there is no explicit dependence on λA and λB in the GS wave function.
-
Note that this decomposition is visible only at finite temperature, where the full Hamiltonian enters the calculations for the von Neumann entropy of the system via the density matrix. At zero temperature, the two contributions do remain distinct, but they cannot be told apart as there is no explicit dependence on λA and λB in the GS wave function.
-
-
-
-
15
-
-
55449109031
-
-
Our conclusions, from the topological entropy, are in disagreement with the ones obtained by
-
Our conclusions, from the topological entropy, are in disagreement with the ones obtained by Z. Nussinov and G. Ortiz in Ref.. While the authors discuss both phase transitions in the model, at T=0 and at finite temperature, they argue that only the former has a topological nature, and they indeed conclude that topological order is fragile at finite temperature. As explained in Sec. 4, this discrepancy is due to the fact that the authors consider winding loop operators as (nonlocal) order parameters, which vanish intrinsically at any finite temperature and cannot be used (at least in a naive way) to investigate the robustness of topological order to thermal fluctuations.
-
-
-
Nussinov, Z.1
Ortiz, G.2
-
16
-
-
3242699284
-
-
E. Knill, R. Laflamme, H. Barnum, D. Dalvit, J. Dziarmaga, J. Gubernatis, L. Gurvits, G. Ortiz, L. Viola, and W. H. Zurek, Los Alamos Sci. 27, 2 (2002).
-
(2002)
Los Alamos Sci.
, vol.27
, pp. 2
-
-
Knill, E.1
Laflamme, R.2
Barnum, H.3
Dalvit, D.4
Dziarmaga, J.5
Gubernatis, J.6
Gurvits, L.7
Ortiz, G.8
Viola, L.9
Zurek, W.H.10
-
17
-
-
36049024363
-
-
10.1103/PhysRevB.76.174416
-
C. Castelnovo and C. Chamon, Phys. Rev. B 10.1103/PhysRevB.76.174416 76, 174416 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 174416
-
-
Castelnovo, C.1
Chamon, C.2
-
18
-
-
55449117441
-
-
The entanglement entropy is invariant under a local spin rotation.
-
The entanglement entropy is invariant under a local spin rotation.
-
-
-
-
20
-
-
55449133966
-
-
Alternatively, one could replace the von Neumann entropy with its symmetrized version-the mutual information (entropy)-as proposed in Ref..
-
Alternatively, one could replace the von Neumann entropy with its symmetrized version-the mutual information (entropy)-as proposed in Ref..
-
-
-
-
21
-
-
0000494981
-
-
10.1063/1.1665530
-
F. Wegner, J. Math. Phys. 10.1063/1.1665530 12, 2259 (1971).
-
(1971)
J. Math. Phys.
, vol.12
, pp. 2259
-
-
Wegner, F.1
-
22
-
-
34247120112
-
-
10.1103/RevModPhys.51.659
-
J. B. Kogut, Rev. Mod. Phys. 10.1103/RevModPhys.51.659 51, 659 (1979).
-
(1979)
Rev. Mod. Phys.
, vol.51
, pp. 659
-
-
Kogut, J.B.1
-
23
-
-
40749089576
-
-
10.1103/PhysRevB.77.064302
-
Z. Nussinov and G. Ortiz, Phys. Rev. B 10.1103/PhysRevB.77.064302 77, 064302 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 064302
-
-
Nussinov, Z.1
Ortiz, G.2
-
24
-
-
35949019960
-
-
10.1103/RevModPhys.52.453
-
R. Savit, Rev. Mod. Phys. 10.1103/RevModPhys.52.453 52, 453 (1980).
-
(1980)
Rev. Mod. Phys.
, vol.52
, pp. 453
-
-
Savit, R.1
-
26
-
-
55449136541
-
-
The familiar reader may have noticed that the construction of ZJ tot is based on the well-known duality between the 3D Ising model and the Z2 Ising gauge theory in three dimensions, discussed, for example, in Refs..
-
The familiar reader may have noticed that the construction of ZJ tot is based on the well-known duality between the 3D Ising model and the Z2 Ising gauge theory in three dimensions, discussed, for example, in Refs..
-
-
-
-
27
-
-
55449106139
-
-
Note that the classical model at finite T that obtains by setting λA =0 is nothing but a classical Z2 gauge theory in three dimensions. Therefore, our results show that the topological entropy of this classical system behaves as a proper (nonlocal) order parameter that captures its finite-temperature phase transition.
-
Note that the classical model at finite T that obtains by setting λA =0 is nothing but a classical Z2 gauge theory in three dimensions. Therefore, our results show that the topological entropy of this classical system behaves as a proper (nonlocal) order parameter that captures its finite-temperature phase transition.
-
-
-
-
28
-
-
55449112284
-
-
We thank John Cardy for pointing us in the direction of this replica trick to handle the delta function terms in Eq. 15.
-
We thank John Cardy for pointing us in the direction of this replica trick to handle the delta function terms in Eq. 15.
-
-
-
|