-
4
-
-
33747623307
-
-
b) W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 2006, 442, 759;
-
(2006)
Nature
, vol.442
, pp. 759
-
-
Eerenstein, W.1
Mathur, N.D.2
Scott, J.F.3
-
6
-
-
35148897887
-
-
There is a trend to include an ordered arrangement of magnetic vortices (termed ferrotoroidicity) in the group of ferroic properties (B. B. Van Aken, J.-P. Rivera, H. Schmid, M. Fiebig, Nature 2007, 449, 702);
-
a) There is a trend to include an ordered arrangement of magnetic vortices (termed ferrotoroidicity) in the group of ferroic properties (B. B. Van Aken, J.-P. Rivera, H. Schmid, M. Fiebig, Nature 2007, 449, 702);
-
-
-
-
7
-
-
55349099479
-
-
Besides the herein described magnetoelectric single-phase systems, the term multiferroics includes composite materials that consist of ferroelectric (and piezoelectric) and ferromagnetic (and piezomagnetic) components, 2a,b
-
[2a,b]
-
-
-
-
8
-
-
0000798431
-
-
a) P. Curie, J. Phys. 1894, 3, 393;
-
(1894)
J. Phys
, vol.3
, pp. 393
-
-
Curie, P.1
-
13
-
-
0035269683
-
-
a) B. B. Van Aken, A. Meetsma, T. T. M. Palstra, Acta Crystallogr. Sect. C 2001, 57, 230;
-
(2001)
Acta Crystallogr. Sect. C
, vol.57
, pp. 230
-
-
Van Aken, B.B.1
Meetsma, A.2
Palstra, T.T.M.3
-
14
-
-
1542273532
-
-
b) B. B. van Aken, T. T. M. Palstra, A. Filippetti, N. A. Spaldin, Nat. Mater. 2004, 3, 164.
-
(2004)
Nat. Mater
, vol.3
, pp. 164
-
-
van Aken, B.B.1
Palstra, T.T.M.2
Filippetti, A.3
Spaldin, N.A.4
-
15
-
-
55349138396
-
-
Ln = Ho, Er, Tm, Yb, Lu, Y; b In the physical literature the denomination rare-earth manganites is often used for these lanthanide manganese trioxides.
-
a) Ln = Ho, Er, Tm, Yb, Lu, Y; b) In the physical literature the denomination rare-earth manganites is often used for these lanthanide manganese trioxides.
-
-
-
-
16
-
-
42749108320
-
-
The nonpolar high-temperature space group of the hexagonal LnMnO 3 series is P63/mmc. All ions are constrained to planes perpendicular to the unique hexagonal axis c. With decreasing temperature a two-step transition to the non-centrosymmetric ferroelectric phase occurs: P63/mmc→P6 3cm at the temperature Tnpt of the nonpolar transition and, without change of symmetry, P63cm→ P63cm at TFE, where T npt ≈ 1430 K and TFE ≈ 1050 K determined for Ln, Tm. The first step is a paraelectric to triangular-antiferroelectric phase transition where the pseudo threefold main axis O-Mn-O of the MnO5 bipyramid tilts and the Ln layer corrugates. The subsequent triangular- antiferroelectric to ferroelectric transition is generated by a displacement of the O2
-
5 unit. (Ref.: T. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Többens, J. A. Mydosh, Phys. Rev. B 2004, 69, 134108).
-
-
-
-
18
-
-
0001249824
-
-
b) H. L. Yakel, W. C. Koehler, E. F. Bertaut, E. F. Forrat, Acta Crystallogr. 1963, 16, 957;
-
(1963)
Acta Crystallogr
, vol.16
, pp. 957
-
-
Yakel, H.L.1
Koehler, W.C.2
Bertaut, E.F.3
Forrat, E.F.4
-
19
-
-
0002464260
-
-
c) E. F. Bertaut, R. Pauthenet, M. Mercier, Phys. Lett. 1965, 18, 13.
-
(1965)
Phys. Lett
, vol.18
, pp. 13
-
-
Bertaut, E.F.1
Pauthenet, R.2
Mercier, M.3
-
20
-
-
0343777322
-
-
a) M. Fiebig, D. Fröhlich, K. Kohn, S. Leute, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, Phys. Rev. Lett. 2000, 84, 5620;
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 5620
-
-
Fiebig, M.1
Fröhlich, D.2
Kohn, K.3
Leute, S.4
Lottermoser, T.5
Pavlov, V.V.6
Pisarev, R.V.7
-
21
-
-
0037167870
-
-
b) M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, R. V. Pisarev, Nature 2002, 419, 818;
-
(2002)
Nature
, vol.419
, pp. 818
-
-
Fiebig, M.1
Lottermoser, T.2
Fröhlich, D.3
Goltsev, A.V.4
Pisarev, R.V.5
-
22
-
-
2642523359
-
-
c) A. V. Goltsev, R. V. Pisarev, T. Lottermoser, M. Fiebig, Phys. Rev. Lett. 2003, 90, 177204.
-
(2003)
Phys. Rev. Lett
, vol.90
, pp. 177204
-
-
Goltsev, A.V.1
Pisarev, R.V.2
Lottermoser, T.3
Fiebig, M.4
-
23
-
-
0642364640
-
-
Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, C. W. Chu, Phys. Rev. B 1997, 56, 2623.
-
(1997)
Phys. Rev. B
, vol.56
, pp. 2623
-
-
Huang, Z.J.1
Cao, Y.2
Sun, Y.Y.3
Xue, Y.Y.4
Chu, C.W.5
-
24
-
-
55349118130
-
-
[10]
-
[10]
-
-
-
-
25
-
-
55349100196
-
-
The mechanism that interlocks the ferroelectric and antiferromagnetic domain walls can be explained as follows:[10c] 1) The distortion at the ferroelectric domain wall as a result of to the reversal of the electric dipoles produces an elastic strain; 2 the gradual rotations of the magnetic moments across an antiferromagnetic wall result in a non-zero local magnetic moment. So, the electric and magnetic perturbations can interact through the piezomagnetic effect, Piezomagnetism describes a change in strain as a linear function of an applied magnetic field, or a change in magnetization as a linear function of applied stress
-
[10c] 1) The distortion at the ferroelectric domain wall as a result of to the reversal of the electric dipoles produces an elastic strain; 2) the gradual rotations of the magnetic moments across an antiferromagnetic wall result in a non-zero local magnetic moment. So, the electric and magnetic perturbations can interact through the piezomagnetic effect. (Piezomagnetism describes a change in strain as a linear function of an applied magnetic field, or a change in magnetization as a linear function of applied stress.)
-
-
-
-
26
-
-
3242882789
-
-
a) T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Nature 2004, 430, 541;
-
(2004)
Nature
, vol.430
, pp. 541
-
-
Lottermoser, T.1
Lonkai, T.2
Amann, U.3
Hohlwein, D.4
Ihringer, J.5
Fiebig, M.6
-
28
-
-
67650710851
-
-
S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, J.-G. Park, Nature 2008, 451, 805.
-
(2008)
Nature
, vol.451
, pp. 805
-
-
Lee, S.1
Pirogov, A.2
Kang, M.3
Jang, K.-H.4
Yonemura, M.5
Kamiyama, T.6
Cheong, S.-W.7
Gozzo, F.8
Shin, N.9
Kimura, H.10
Noda, Y.11
Park, J.-G.12
|