메뉴 건너뛰기




Volumn 78, Issue 15, 2008, Pages

Infinite time-evolving block decimation algorithm beyond unitary evolution

Author keywords

[No Author keywords available]

Indexed keywords


EID: 55349127399     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.155117     Document Type: Article
Times cited : (550)

References (45)
  • 1
    • 4244095121 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.75.3537
    • S. Ostlund and S. Rommer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.75.3537 75, 3537 (1995)
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 3537
    • Ostlund, S.1    Rommer, S.2
  • 4
    • 3442895828 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.69.2863
    • S. R. White, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.69. 2863 69, 2863 (1992)
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 2863
    • White, S.R.1
  • 5
    • 20044389808 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.48.10345
    • S. R. White, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.10345 48, 10345 (1993).
    • (1993) Phys. Rev. B , vol.48 , pp. 10345
    • White, S.R.1
  • 6
    • 0242425255 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.91.147902
    • G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.147902 91, 147902 (2003)
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 147902
    • Vidal, G.1
  • 7
    • 4344570203 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.93.040502
    • G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.040502 93, 040502 (2004)
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 040502
    • Vidal, G.1
  • 8
    • 19444381068 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.93.076401
    • S. R. White and A. E. Feiguin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.076401 93, 076401 (2004)
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 076401
    • White, S.R.1    Feiguin, A.E.2
  • 16
    • 55349088009 scopus 로고    scopus 로고
    • arXiv:cond-mat/0407066 (unpublished);
    • F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (unpublished)
    • Verstraete, F.1    Cirac, J.I.2
  • 17
    • 33947217528 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.75.033605
    • V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.033605 75, 033605 (2007).
    • (2007) Phys. Rev. a , vol.75 , pp. 033605
    • Murg, V.1    Verstraete, F.2    Cirac, J.I.3
  • 18
    • 36549074539 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.99.220405
    • G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.220405 99, 220405 (2007)
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 220405
    • Vidal, G.1
  • 19
    • 55349089034 scopus 로고    scopus 로고
    • arXiv:0707.1454 (unpublished).
    • G. Evenbly and G. Vidal, arXiv:0707.1454 (unpublished).
    • Evenbly, G.1    Vidal, G.2
  • 20
    • 0000670169 scopus 로고
    • JUPSAU 0031-9015 10.1143/JPSJ.64.3598
    • T. Nishino, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.64.3598 64, 3598 (1995)
    • (1995) J. Phys. Soc. Jpn. , vol.64 , pp. 3598
    • Nishino, T.1
  • 21
    • 55349146367 scopus 로고    scopus 로고
    • edited by I. Peschel, X. Wang, and K. Hallberg, Lecture Note in Physics Vol. 528 (Springer, Berlin
    • T. Nishino and K. Okunishi, in Transfer-Matrix Approach to Classical Systems, edited by, I. Peschel,,, X. Wang,, and, K. Hallberg,, Lecture Note in Physics Vol. 528 (Springer, Berlin, 1999), pp. 127-148.
    • (1999) Transfer-Matrix Approach to Classical Systems , pp. 127-148
    • Nishino, T.1    Okunishi, K.2
  • 22
    • 0030547133 scopus 로고    scopus 로고
    • JUPSAU 0031-9015 10.1143/JPSJ.65.891
    • T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.65.891 65, 891 (1996)
    • (1996) J. Phys. Soc. Jpn. , vol.65 , pp. 891
    • Nishino, T.1    Okunishi, K.2
  • 23
    • 0031319123 scopus 로고    scopus 로고
    • JUPSAU 0031-9015 10.1143/JPSJ.66.3040
    • T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.66.3040 66, 3040 (1997)
    • (1997) J. Phys. Soc. Jpn. , vol.66 , pp. 3040
    • Nishino, T.1    Okunishi, K.2
  • 24
    • 0000961795 scopus 로고    scopus 로고
    • PYLAAG 0375-9601 10.1016/0375-9601(96)00128-4
    • T. Nishino, K. Okunishi, and M. Kikuchi, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(96)00128-4 213, 69 (1996).
    • (1996) Phys. Lett. a , vol.213 , pp. 69
    • Nishino, T.1    Okunishi, K.2    Kikuchi, M.3
  • 25
    • 34548847751 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.99.120601
    • M. Levin and C. P. Nave, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.120601 99, 120601 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 120601
    • Levin, M.1    Nave, C.P.2
  • 26
    • 0000977416 scopus 로고
    • JUPSAU 0031-9015 10.1143/JPSJ.64.4084
    • T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.64.4084 64, 4084 (1995)
    • (1995) J. Phys. Soc. Jpn. , vol.64 , pp. 4084
    • Nishino, T.1    Okunishi, K.2
  • 28
    • 55349101752 scopus 로고    scopus 로고
    • arXiv:0804.2509 (unpublished).
    • I. P. McCulloch, arXiv:0804.2509 (unpublished).
    • McCulloch, I.P.1
  • 29
    • 19744365684 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.93.207205
    • M. Zwolak and G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.207205 93, 207205 (2004).
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 207205
    • Zwolak, M.1    Vidal, G.2
  • 31
    • 55349133149 scopus 로고    scopus 로고
    • Given a matrix M, we refer to its eigenvalue with largest absolute value as the dominant eigenvalue. Similarly, we refer to the corresponding eigenvector as the dominant eigenvector of M.
    • Given a matrix M, we refer to its eigenvalue with largest absolute value as the dominant eigenvalue. Similarly, we refer to the corresponding eigenvector as the dominant eigenvector of M.
  • 33
    • 33846978099 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.98.070201
    • G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.070201 98, 070201 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 070201
    • Vidal, G.1
  • 34
    • 33747637170 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.74.022320
    • Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.022320 74, 022320 (2006).
    • (2006) Phys. Rev. a , vol.74 , pp. 022320
    • Shi, Y.-Y.1    Duan, L.-M.2    Vidal, G.3
  • 35
    • 55349109004 scopus 로고    scopus 로고
    • The canonical form is unique up to a choice of phases ei α. Two canonical forms for |Ψ, (Γ,λ) and (Γ′, λ′), are related by (Γ′) αβ i = ei α Γ αβ i e-i β and λ′ =λ.
    • The canonical form is unique up to a choice of phases ei α. Two canonical forms for |Ψ, (Γ,λ) and (Γ′, λ′), are related by (Γ′) αβ i = ei α Γ αβ i e-i β and λ′ =λ.
  • 36
    • 55349127156 scopus 로고    scopus 로고
    • There are states of a chain, such as the cat state limN→ c0 |0 N + c1 |1 N, | c0 | 2 + | c1 | 2 =1, for which the dominant eigenvalue is degenerate. The iMPS description needs to be supplemented with an extra tensor, sitting at infinite, that determines the boundary conditions (in this case the values of c0 and c1). Here we will not consider such cases.
    • There are states of a chain, such as the cat state limN→ c0 |0 N + c1 |1 N, | c0 | 2 + | c1 | 2 =1, for which the dominant eigenvalue is degenerate. The iMPS description needs to be supplemented with an extra tensor, sitting at infinite, that determines the boundary conditions (in this case the values of c0 and c1). Here we will not consider such cases.
  • 37
    • 0142198839 scopus 로고    scopus 로고
    • Non-Hermitian eigenvalue problems also occur in the context of transfer matrix DMRG. For instance, see N. Shibata, JPHAC5 0305-4470 10.1088/0305-4470/ 36/37/201
    • Non-Hermitian eigenvalue problems also occur in the context of transfer matrix DMRG. For instance, see, N. Shibata,, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/36/37/201 36, R381 (2003).
    • (2003) J. Phys. a , vol.36 , pp. 381
  • 38
    • 55349112282 scopus 로고    scopus 로고
    • A Cholesky decomposition can also be used to obtain two lower triangular matrices for X and Y (see e.g.
    • A Cholesky decomposition can also be used to obtain two lower triangular matrices for X and Y (see e.g. http://en.wikipedia.org/wiki/ Cholesky_decomposition).
  • 39
    • 55349104599 scopus 로고    scopus 로고
    • This bound is optimal as long as χ>κ. In the case κχ the efficiency can be improved by using alternative contractions.
    • This bound is optimal as long as χ>κ. In the case κχ the efficiency can be improved by using alternative contractions.
  • 40
    • 55349099613 scopus 로고    scopus 로고
    • Truncating a bond index so as to retain the χ largest Schmidt coefficients λα is optimal in that it maximizes the overlap between the initial and truncated states. In the present case we use this recipe to truncate all bond indices of the iMPS at once. This is no longer expected to be optimal, but it is simple and seen to produce very satisfactory results.
    • Truncating a bond index so as to retain the χ largest Schmidt coefficients λα is optimal in that it maximizes the overlap between the initial and truncated states. In the present case we use this recipe to truncate all bond indices of the iMPS at once. This is no longer expected to be optimal, but it is simple and seen to produce very satisfactory results.
  • 41
    • 55349108631 scopus 로고    scopus 로고
    • Another way to turn an iMPS { ΓA, λA, ΓB, λB } into the canonical form is by using the algorithm of Ref. to simulate a large sequence of trivial two-site gates (that is, gates that implement the identity operator) alternatively acting on even and odd bonds. It is seen that after each update the iMPS is closer to the canonical form. In practice, the orthonormalization strategy explained in this paper is more efficient and precise.
    • Another way to turn an iMPS { ΓA, λA, ΓB, λB } into the canonical form is by using the algorithm of Ref. to simulate a large sequence of trivial two-site gates (that is, gates that implement the identity operator) alternatively acting on even and odd bonds. It is seen that after each update the iMPS is closer to the canonical form. In practice, the orthonormalization strategy explained in this paper is more efficient and precise.
  • 42
    • 55349110745 scopus 로고    scopus 로고
    • For a nonsymmetric Hamiltonian K2, Q is decomposed into two different matrices Q= Q1 Q2 (e.g., through a singular value decomposition). If K2 changes along different lattice directions (anisotropic model), then we will decompose two matrices Qx and Qy. In both situations one can proceed in a similar way as in the symmetric, isotropic case.
    • For a nonsymmetric Hamiltonian K2, Q is decomposed into two different matrices Q= Q1 Q2 (e.g., through a singular value decomposition). If K2 changes along different lattice directions (anisotropic model), then we will decompose two matrices Qx and Qy. In both situations one can proceed in a similar way as in the symmetric, isotropic case.
  • 43
    • 33744788653 scopus 로고    scopus 로고
    • Our construction was inspired by a similar one in PRLTAO 0031-9007 10.1103/PhysRevLett.96.220601
    • Our construction was inspired by a similar one in F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.220601 96, 220601 (2006);
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 220601
    • Verstraete, F.1    Wolf, M.M.2    Perez-Garcia, D.3    Cirac, J.I.4
  • 44
    • 55349144610 scopus 로고    scopus 로고
    • where finite systems were analyzed by mapping the partition function into a PEPS. Here we skip the map into PEPS and significantly reduce simulation costs by decreasing the bond dimension of the resulting 2D tensor network from d2 to d.
    • where finite systems were analyzed by mapping the partition function into a PEPS. Here we skip the map into PEPS and significantly reduce simulation costs by decreasing the bond dimension of the resulting 2D tensor network from d2 to d.
  • 45
    • 55349090399 scopus 로고    scopus 로고
    • Another good reason to use the canonical form of an iMPS is that it simplifies the comparison between two states. As a criterion for convergence of the sequence | Ψp in Eq. 19, we require that the Schmidt coefficients λ of the iMPS have converged with respect to p within some accuracy.
    • Another good reason to use the canonical form of an iMPS is that it simplifies the comparison between two states. As a criterion for convergence of the sequence | Ψp in Eq. 19, we require that the Schmidt coefficients λ of the iMPS have converged with respect to p within some accuracy.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.