-
1
-
-
4244095121
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.75.3537
-
S. Ostlund and S. Rommer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.75.3537 75, 3537 (1995)
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3537
-
-
Ostlund, S.1
Rommer, S.2
-
3
-
-
34447647603
-
-
QICUAW 1533-7146
-
D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum Inf. Comput. QICUAW 1533-7146 7, 401 (2007).
-
(2007)
Quantum Inf. Comput.
, vol.7
, pp. 401
-
-
Perez-Garcia, D.1
Verstraete, F.2
Wolf, M.M.3
Cirac, J.I.4
-
4
-
-
3442895828
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.69.2863
-
S. R. White, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.69. 2863 69, 2863 (1992)
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
5
-
-
20044389808
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.10345 48, 10345 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
6
-
-
0242425255
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.147902
-
G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.147902 91, 147902 (2003)
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 147902
-
-
Vidal, G.1
-
7
-
-
4344570203
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.040502
-
G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.040502 93, 040502 (2004)
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 040502
-
-
Vidal, G.1
-
8
-
-
19444381068
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.076401
-
S. R. White and A. E. Feiguin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.076401 93, 076401 (2004)
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 076401
-
-
White, S.R.1
Feiguin, A.E.2
-
9
-
-
10244221686
-
-
ZZZZZZ 1742-5468
-
A. J. Daley, C. Kollath, U. Schollwoeck, and G. Vidal, J. Stat. Mech.: Theory Exp. ZZZZZZ 1742-5468 (2004), 04005.
-
J. Stat. Mech.: Theory Exp.
, vol.2004
, pp. 04005
-
-
Daley, A.J.1
Kollath, C.2
Schollwoeck, U.3
Vidal, G.4
-
10
-
-
0000512245
-
-
NUPBBO 0550-3213 10.1016/S0550-3213(00)00133-4
-
T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y. Akutsu, Nucl. Phys. B NUPBBO 0550-3213 10.1016/S0550-3213(00)00133-4 575, 504 (2000)
-
(2000)
Nucl. Phys. B
, vol.575
, pp. 504
-
-
Nishino, T.1
Okunishi, K.2
Hieida, Y.3
Maeshima, N.4
Akutsu, Y.5
-
11
-
-
0035532595
-
-
PTPKAV 0033-068X 10.1143/PTP.105.409
-
T. Nishino, Y. Hieida, K. Okunishi, N. Maeshima, Y. Akutsu, and A. Gendiar, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.105.409 105, 409 (2001)
-
(2001)
Prog. Theor. Phys.
, vol.105
, pp. 409
-
-
Nishino, T.1
Hieida, Y.2
Okunishi, K.3
Maeshima, N.4
Akutsu, Y.5
Gendiar, A.6
-
13
-
-
0035395008
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.64.016705
-
N. Maeshima, Y. Hieida, Y. Akutsu, T. Nishino, and K. Okunishi, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.64.016705 64, 016705 (2001)
-
(2001)
Phys. Rev. e
, vol.64
, pp. 016705
-
-
Maeshima, N.1
Hieida, Y.2
Akutsu, Y.3
Nishino, T.4
Okunishi, K.5
-
16
-
-
55349088009
-
-
arXiv:cond-mat/0407066 (unpublished);
-
F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (unpublished)
-
-
-
Verstraete, F.1
Cirac, J.I.2
-
17
-
-
33947217528
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.033605
-
V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.033605 75, 033605 (2007).
-
(2007)
Phys. Rev. a
, vol.75
, pp. 033605
-
-
Murg, V.1
Verstraete, F.2
Cirac, J.I.3
-
18
-
-
36549074539
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.220405
-
G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.220405 99, 220405 (2007)
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 220405
-
-
Vidal, G.1
-
19
-
-
55349089034
-
-
arXiv:0707.1454 (unpublished).
-
G. Evenbly and G. Vidal, arXiv:0707.1454 (unpublished).
-
-
-
Evenbly, G.1
Vidal, G.2
-
20
-
-
0000670169
-
-
JUPSAU 0031-9015 10.1143/JPSJ.64.3598
-
T. Nishino, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.64.3598 64, 3598 (1995)
-
(1995)
J. Phys. Soc. Jpn.
, vol.64
, pp. 3598
-
-
Nishino, T.1
-
21
-
-
55349146367
-
-
edited by I. Peschel, X. Wang, and K. Hallberg, Lecture Note in Physics Vol. 528 (Springer, Berlin
-
T. Nishino and K. Okunishi, in Transfer-Matrix Approach to Classical Systems, edited by, I. Peschel,,, X. Wang,, and, K. Hallberg,, Lecture Note in Physics Vol. 528 (Springer, Berlin, 1999), pp. 127-148.
-
(1999)
Transfer-Matrix Approach to Classical Systems
, pp. 127-148
-
-
Nishino, T.1
Okunishi, K.2
-
22
-
-
0030547133
-
-
JUPSAU 0031-9015 10.1143/JPSJ.65.891
-
T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.65.891 65, 891 (1996)
-
(1996)
J. Phys. Soc. Jpn.
, vol.65
, pp. 891
-
-
Nishino, T.1
Okunishi, K.2
-
23
-
-
0031319123
-
-
JUPSAU 0031-9015 10.1143/JPSJ.66.3040
-
T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.66.3040 66, 3040 (1997)
-
(1997)
J. Phys. Soc. Jpn.
, vol.66
, pp. 3040
-
-
Nishino, T.1
Okunishi, K.2
-
24
-
-
0000961795
-
-
PYLAAG 0375-9601 10.1016/0375-9601(96)00128-4
-
T. Nishino, K. Okunishi, and M. Kikuchi, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(96)00128-4 213, 69 (1996).
-
(1996)
Phys. Lett. a
, vol.213
, pp. 69
-
-
Nishino, T.1
Okunishi, K.2
Kikuchi, M.3
-
25
-
-
34548847751
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.99.120601
-
M. Levin and C. P. Nave, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.120601 99, 120601 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 120601
-
-
Levin, M.1
Nave, C.P.2
-
26
-
-
0000977416
-
-
JUPSAU 0031-9015 10.1143/JPSJ.64.4084
-
T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. JUPSAU 0031-9015 10.1143/JPSJ.64.4084 64, 4084 (1995)
-
(1995)
J. Phys. Soc. Jpn.
, vol.64
, pp. 4084
-
-
Nishino, T.1
Okunishi, K.2
-
27
-
-
33847396878
-
-
JUPSAU 0031-9015
-
K. Ueda, T. Nishino, K. Okunishi, Y. Hieida, R. Derian, and A. Gendiar, J. Phys. Soc. Jpn. JUPSAU 0031-9015 75, 014003 (2006).
-
(2006)
J. Phys. Soc. Jpn.
, vol.75
, pp. 014003
-
-
Ueda, K.1
Nishino, T.2
Okunishi, K.3
Hieida, Y.4
Derian, R.5
Gendiar, A.6
-
28
-
-
55349101752
-
-
arXiv:0804.2509 (unpublished).
-
I. P. McCulloch, arXiv:0804.2509 (unpublished).
-
-
-
McCulloch, I.P.1
-
29
-
-
19744365684
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.207205
-
M. Zwolak and G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.207205 93, 207205 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207205
-
-
Zwolak, M.1
Vidal, G.2
-
31
-
-
55349133149
-
-
Given a matrix M, we refer to its eigenvalue with largest absolute value as the dominant eigenvalue. Similarly, we refer to the corresponding eigenvector as the dominant eigenvector of M.
-
Given a matrix M, we refer to its eigenvalue with largest absolute value as the dominant eigenvalue. Similarly, we refer to the corresponding eigenvector as the dominant eigenvector of M.
-
-
-
-
32
-
-
55349144978
-
-
arXiv:cond-mat/0703788 (unpublished).
-
J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, arXiv:cond-mat/0703788 (unpublished).
-
-
-
Jordan, J.1
Orús, R.2
Vidal, G.3
Verstraete, F.4
Cirac, J.I.5
-
33
-
-
33846978099
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.070201
-
G. Vidal, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.070201 98, 070201 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 070201
-
-
Vidal, G.1
-
34
-
-
33747637170
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.74.022320
-
Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.022320 74, 022320 (2006).
-
(2006)
Phys. Rev. a
, vol.74
, pp. 022320
-
-
Shi, Y.-Y.1
Duan, L.-M.2
Vidal, G.3
-
35
-
-
55349109004
-
-
The canonical form is unique up to a choice of phases ei α. Two canonical forms for |Ψ, (Γ,λ) and (Γ′, λ′), are related by (Γ′) αβ i = ei α Γ αβ i e-i β and λ′ =λ.
-
The canonical form is unique up to a choice of phases ei α. Two canonical forms for |Ψ, (Γ,λ) and (Γ′, λ′), are related by (Γ′) αβ i = ei α Γ αβ i e-i β and λ′ =λ.
-
-
-
-
36
-
-
55349127156
-
-
There are states of a chain, such as the cat state limN→ c0 |0 N + c1 |1 N, | c0 | 2 + | c1 | 2 =1, for which the dominant eigenvalue is degenerate. The iMPS description needs to be supplemented with an extra tensor, sitting at infinite, that determines the boundary conditions (in this case the values of c0 and c1). Here we will not consider such cases.
-
There are states of a chain, such as the cat state limN→ c0 |0 N + c1 |1 N, | c0 | 2 + | c1 | 2 =1, for which the dominant eigenvalue is degenerate. The iMPS description needs to be supplemented with an extra tensor, sitting at infinite, that determines the boundary conditions (in this case the values of c0 and c1). Here we will not consider such cases.
-
-
-
-
37
-
-
0142198839
-
-
Non-Hermitian eigenvalue problems also occur in the context of transfer matrix DMRG. For instance, see N. Shibata, JPHAC5 0305-4470 10.1088/0305-4470/ 36/37/201
-
Non-Hermitian eigenvalue problems also occur in the context of transfer matrix DMRG. For instance, see, N. Shibata,, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/36/37/201 36, R381 (2003).
-
(2003)
J. Phys. a
, vol.36
, pp. 381
-
-
-
38
-
-
55349112282
-
-
A Cholesky decomposition can also be used to obtain two lower triangular matrices for X and Y (see e.g.
-
A Cholesky decomposition can also be used to obtain two lower triangular matrices for X and Y (see e.g. http://en.wikipedia.org/wiki/ Cholesky_decomposition).
-
-
-
-
39
-
-
55349104599
-
-
This bound is optimal as long as χ>κ. In the case κχ the efficiency can be improved by using alternative contractions.
-
This bound is optimal as long as χ>κ. In the case κχ the efficiency can be improved by using alternative contractions.
-
-
-
-
40
-
-
55349099613
-
-
Truncating a bond index so as to retain the χ largest Schmidt coefficients λα is optimal in that it maximizes the overlap between the initial and truncated states. In the present case we use this recipe to truncate all bond indices of the iMPS at once. This is no longer expected to be optimal, but it is simple and seen to produce very satisfactory results.
-
Truncating a bond index so as to retain the χ largest Schmidt coefficients λα is optimal in that it maximizes the overlap between the initial and truncated states. In the present case we use this recipe to truncate all bond indices of the iMPS at once. This is no longer expected to be optimal, but it is simple and seen to produce very satisfactory results.
-
-
-
-
41
-
-
55349108631
-
-
Another way to turn an iMPS { ΓA, λA, ΓB, λB } into the canonical form is by using the algorithm of Ref. to simulate a large sequence of trivial two-site gates (that is, gates that implement the identity operator) alternatively acting on even and odd bonds. It is seen that after each update the iMPS is closer to the canonical form. In practice, the orthonormalization strategy explained in this paper is more efficient and precise.
-
Another way to turn an iMPS { ΓA, λA, ΓB, λB } into the canonical form is by using the algorithm of Ref. to simulate a large sequence of trivial two-site gates (that is, gates that implement the identity operator) alternatively acting on even and odd bonds. It is seen that after each update the iMPS is closer to the canonical form. In practice, the orthonormalization strategy explained in this paper is more efficient and precise.
-
-
-
-
42
-
-
55349110745
-
-
For a nonsymmetric Hamiltonian K2, Q is decomposed into two different matrices Q= Q1 Q2 (e.g., through a singular value decomposition). If K2 changes along different lattice directions (anisotropic model), then we will decompose two matrices Qx and Qy. In both situations one can proceed in a similar way as in the symmetric, isotropic case.
-
For a nonsymmetric Hamiltonian K2, Q is decomposed into two different matrices Q= Q1 Q2 (e.g., through a singular value decomposition). If K2 changes along different lattice directions (anisotropic model), then we will decompose two matrices Qx and Qy. In both situations one can proceed in a similar way as in the symmetric, isotropic case.
-
-
-
-
43
-
-
33744788653
-
-
Our construction was inspired by a similar one in PRLTAO 0031-9007 10.1103/PhysRevLett.96.220601
-
Our construction was inspired by a similar one in F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.220601 96, 220601 (2006);
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 220601
-
-
Verstraete, F.1
Wolf, M.M.2
Perez-Garcia, D.3
Cirac, J.I.4
-
44
-
-
55349144610
-
-
where finite systems were analyzed by mapping the partition function into a PEPS. Here we skip the map into PEPS and significantly reduce simulation costs by decreasing the bond dimension of the resulting 2D tensor network from d2 to d.
-
where finite systems were analyzed by mapping the partition function into a PEPS. Here we skip the map into PEPS and significantly reduce simulation costs by decreasing the bond dimension of the resulting 2D tensor network from d2 to d.
-
-
-
-
45
-
-
55349090399
-
-
Another good reason to use the canonical form of an iMPS is that it simplifies the comparison between two states. As a criterion for convergence of the sequence | Ψp in Eq. 19, we require that the Schmidt coefficients λ of the iMPS have converged with respect to p within some accuracy.
-
Another good reason to use the canonical form of an iMPS is that it simplifies the comparison between two states. As a criterion for convergence of the sequence | Ψp in Eq. 19, we require that the Schmidt coefficients λ of the iMPS have converged with respect to p within some accuracy.
-
-
-
|