-
2
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
R. Barandela, J. S. Sánchez, V. García, and E. Rangel. Strategies for learning in class imbalance problems. Pattern Recognition, 36(3):849-851, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.3
, pp. 849-851
-
-
Barandela, R.1
Sánchez, J.S.2
García, V.3
Rangel, E.4
-
3
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations, 6(1):20-29, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
4
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
-
J. R. Cano, F. Herrera, and M. Lozano. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 7(6):561-575, 2003.
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, Issue.6
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
5
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
-
J. R. Cano, F. Herrera, and M. Lozano. Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability. Data and Knowledge Engineering, 60:90-108, 2007.
-
(2007)
Data and Knowledge Engineering
, vol.60
, pp. 90-108
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
6
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
8
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations, 6(1):1-6, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
9
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Rechearch, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Rechearch
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
10
-
-
0001334115
-
The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination
-
G. J. E. Rawlings, editor
-
L. J. Eshelman. The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination. In G. J. E. Rawlings, editor, Foundations of genetic algorithms, pages 265-283. 1991.
-
(1991)
Foundations of genetic algorithms
, pp. 265-283
-
-
Eshelman, L.J.1
-
11
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1):18-36, 2004.
-
(2004)
Computational Intelligence
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
12
-
-
42749092345
-
A memetic algorithm for evolutionary prototype selection: A scaling up approach
-
S. Garcia, J. R. Cano, and F. Herrera. A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693-2709, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.8
, pp. 2693-2709
-
-
Garcia, S.1
Cano, J.R.2
Herrera, F.3
-
13
-
-
84861985668
-
Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
-
S. Garcia and F. Herrera. Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy. Evolutionary Computation. Inpress., 2008.
-
(2008)
Evolutionary Computation. Inpress
-
-
Garcia, S.1
Herrera, F.2
-
14
-
-
55349091246
-
Fast and accurate feature selection using hybrid genetic strategies
-
C. Guerra-Salcedo, S. Chen, D. Whitley, and S. Smith. Fast and accurate feature selection using hybrid genetic strategies. In CEC, pages 177-184, 1999.
-
(1999)
CEC
, pp. 177-184
-
-
Guerra-Salcedo, C.1
Chen, S.2
Whitley, D.3
Smith, S.4
-
15
-
-
33746839186
-
Imbalanced learning with a biased minimax probability machine
-
K. Huang, H. Yang, I. King, and M. R. Lyu. Imbalanced learning with a biased minimax probability machine. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 36(4):913-923, 2006.
-
(2006)
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
, vol.36
, Issue.4
, pp. 913-923
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.R.4
-
16
-
-
0001972236
-
Addressing the course of imbalanced training sets: One-sided selection
-
M. Kubat and S. Matwin. Addressing the course of imbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
-
(1997)
ICML
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
21
-
-
33845523839
-
Feature selection based on rough sets and particle swarm optimization
-
X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4):459-471, 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.4
, pp. 459-471
-
-
Wang, X.1
Yang, J.2
Teng, X.3
Xia, W.4
Jensen, R.5
-
22
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M. Weiss and F. J. Provost. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.J.2
-
23
-
-
0002733555
-
Messy genetic algorithms for subset feature selection
-
D. Whitley, R. Beveridge, C. Guerra, and C. Graves. Messy genetic algorithms for subset feature selection. In Proceedings of the International Conference on Genetic Algorithms, pages 568-575, 1998.
-
(1998)
Proceedings of the International Conference on Genetic Algorithms
, pp. 568-575
-
-
Whitley, D.1
Beveridge, R.2
Guerra, C.3
Graves, C.4
|