메뉴 건너뛰기




Volumn , Issue , 2008, Pages 567-572

Evolutionary training set selection to optimize C4.5 in imbalanced problems

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY; DECISION TREES; EVOLUTIONARY ALGORITHMS; INTELLIGENT CONTROL; INTELLIGENT SYSTEMS; LEARNING SYSTEMS;

EID: 55349111507     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/HIS.2008.67     Document Type: Conference Paper
Times cited : (7)

References (24)
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations, 6(1):20-29, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 4
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • J. R. Cano, F. Herrera, and M. Lozano. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 7(6):561-575, 2003.
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 5
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
    • J. R. Cano, F. Herrera, and M. Lozano. Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability. Data and Knowledge Engineering, 60:90-108, 2007.
    • (2007) Data and Knowledge Engineering , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations, 6(1):1-6, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 9
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Rechearch, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Rechearch , vol.7 , pp. 1-30
    • Demšar, J.1
  • 10
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination
    • G. J. E. Rawlings, editor
    • L. J. Eshelman. The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination. In G. J. E. Rawlings, editor, Foundations of genetic algorithms, pages 265-283. 1991.
    • (1991) Foundations of genetic algorithms , pp. 265-283
    • Eshelman, L.J.1
  • 11
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1):18-36, 2004.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 12
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • S. Garcia, J. R. Cano, and F. Herrera. A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693-2709, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2693-2709
    • Garcia, S.1    Cano, J.R.2    Herrera, F.3
  • 13
    • 84861985668 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. Garcia and F. Herrera. Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy. Evolutionary Computation. Inpress., 2008.
    • (2008) Evolutionary Computation. Inpress
    • Garcia, S.1    Herrera, F.2
  • 14
    • 55349091246 scopus 로고    scopus 로고
    • Fast and accurate feature selection using hybrid genetic strategies
    • C. Guerra-Salcedo, S. Chen, D. Whitley, and S. Smith. Fast and accurate feature selection using hybrid genetic strategies. In CEC, pages 177-184, 1999.
    • (1999) CEC , pp. 177-184
    • Guerra-Salcedo, C.1    Chen, S.2    Whitley, D.3    Smith, S.4
  • 16
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the course of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin. Addressing the course of imbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
    • (1997) ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 21
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4):459-471, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 22
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. J. Provost. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.