-
1
-
-
0036013603
-
The world of the complex Ginzburg-Landau equation
-
I. S. ARANSON AND L. KRAMER, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 100-138.
-
(2002)
Rev. Modern Phys
, vol.74
, pp. 100-138
-
-
ARANSON, I.S.1
KRAMER, L.2
-
2
-
-
35148816070
-
Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation
-
W. BAO, Q. DU, AND Y. ZHANG, Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation, European J. Appl. Math., 18 (2007) pp. 607-630.
-
(2007)
European J. Appl. Math
, vol.18
, pp. 607-630
-
-
BAO, W.1
DU, Q.2
ZHANG, Y.3
-
3
-
-
0037138007
-
On time splitting spectral approximations for the Schrödinger equation in the semiclassical regime
-
W. BAO, S. JIN, AND P. A. MARKOWICH, On time splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), pp. 487-524.
-
(2002)
J. Comput. Phys
, vol.175
, pp. 487-524
-
-
BAO, W.1
JIN, S.2
MARKOWICH, P.A.3
-
4
-
-
1842531889
-
Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes
-
W. BAO, S. JIN, AND P. A. MARKOWICH, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), pp. 27-64.
-
(2003)
SIAM J. Sci. Comput
, vol.25
, pp. 27-64
-
-
BAO, W.1
JIN, S.2
MARKOWICH, P.A.3
-
5
-
-
0036556648
-
Order estimates in time of splitting methods for the nonlinear Schrödinger equation
-
C. BESSE, B. BIDÉGARAY, AND S. DESCOMBES, Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002), pp. 26-40.
-
(2002)
SIAM J. Numer. Anal
, vol.40
, pp. 26-40
-
-
BESSE, C.1
BIDÉGARAY, B.2
DESCOMBES, S.3
-
6
-
-
0001896611
-
Some singular limits for evolutionary Ginzburg-Landau equations
-
T. COLIN AND A. SOYEUR, Some singular limits for evolutionary Ginzburg-Landau equations, Asymptot. Anal., 13 (1996), pp. 361-372.
-
(1996)
Asymptot. Anal
, vol.13
, pp. 361-372
-
-
COLIN, T.1
SOYEUR, A.2
-
7
-
-
33947152511
-
An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit
-
P. CRISPEL, P. DEGOND, AND M. H. VIGNAL, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2007), pp. 208-234.
-
(2007)
J. Comput. Phys
, vol.223
, pp. 208-234
-
-
CRISPEL, P.1
DEGOND, P.2
VIGNAL, M.H.3
-
8
-
-
12044252828
-
Pattern formation outside of equilibrium
-
M. C. CROSS AND P. C. HOHENBERG, Pattern formation outside of equilibrium, Rev. Modern Phys., 65 (1993), pp. 851-1112.
-
(1993)
Rev. Modern Phys
, vol.65
, pp. 851-1112
-
-
CROSS, M.C.1
HOHENBERG, P.C.2
-
9
-
-
0002625921
-
Mathematical tools for pattern formation
-
Systems, F. H. Busse and S. D. Müller, eds, Springer-Verlag, New York
-
G. DANGELMAYR AND L. KRAMER, Mathematical tools for pattern formation, in Evolution of Spontaneous Structures in Dissipative Continuous Systems, F. H. Busse and S. D. Müller, eds., Springer-Verlag, New York, 1998, pp. 1-85.
-
(1998)
Evolution of Spontaneous Structures in Dissipative Continuous
, pp. 1-85
-
-
DANGELMAYR, G.1
KRAMER, L.2
-
10
-
-
84959666786
-
Non-linear wave number interaction in near critical two-dimensional flows
-
R. C. DIPRIMA, W. ECKHAUS, AND L. A. SEGEL, Non-linear wave number interaction in near critical two-dimensional flows, J. Fluid Mech., 49 (1971), pp. 705-744.
-
(1971)
J. Fluid Mech
, vol.49
, pp. 705-744
-
-
DIPRIMA, R.C.1
ECKHAUS, W.2
SEGEL, L.A.3
-
11
-
-
0000719102
-
Finite-dimensional models of the Ginzburg-Landau equation
-
A. DOELMAN, Finite-dimensional models of the Ginzburg-Landau equation, Nonlinearity, 4 (1991), pp. 231-150.
-
(1991)
Nonlinearity
, vol.4
, pp. 231-150
-
-
DOELMAN, A.1
-
12
-
-
0000804338
-
The convergence of numerical transfer schemes in diffusive regimes I: The discrete-ordinate method
-
F. GOLSE, S. JIN, AND C. D. LEVERMORE, The convergence of numerical transfer schemes in diffusive regimes I: The discrete-ordinate method, SIAM J. Numer. Anal., 36 (1999), pp. 1333-1369.
-
(1999)
SIAM J. Numer. Anal
, vol.36
, pp. 1333-1369
-
-
GOLSE, F.1
JIN, S.2
LEVERMORE, C.D.3
-
13
-
-
19744363102
-
A time-splitting spectral scheme for the Maxwell-Dirac system
-
Z. HUANG, S. JIN, P. A. MARKOWICH, C. SPARSER, AND C. ZHENG, A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys., 208 (2005), pp. 761-789.
-
(2005)
J. Comput. Phys
, vol.208
, pp. 761-789
-
-
HUANG, Z.1
JIN, S.2
MARKOWICH, P.A.3
SPARSER, C.4
ZHENG, C.5
-
14
-
-
0033295423
-
Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations
-
S. JIN, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), pp. 441-454.
-
(1999)
SIAM J. Sci. Comput
, vol.21
, pp. 441-454
-
-
JIN, S.1
-
15
-
-
13844262830
-
Numerical simulation of a generalized Zakharov system
-
S. JIN, P. A. MARKOWICH, AND C. ZHENG, Numerical simulation of a generalized Zakharov system, J. Comput. Phys., 201 (2004), pp. 376-395.
-
(2004)
J. Comput. Phys
, vol.201
, pp. 376-395
-
-
JIN, S.1
MARKOWICH, P.A.2
ZHENG, C.3
-
16
-
-
0000781993
-
-
Dynamical Systems and Probabilistic Methods in PDEs Berkeley, CA, Lectures in Appl. Math. 31, AMS, Providence, RI
-
C. D. LEVERMORE AND M. OLIVER, The complex Ginzburg-Landau equation as a model problem, in Dynamical Systems and Probabilistic Methods in PDEs (Berkeley, CA, 1994), Lectures in Appl. Math. 31, AMS, Providence, RI, 1996, pp. 141-190.
-
(1994)
The complex Ginzburg-Landau equation as a model problem
, pp. 141-190
-
-
LEVERMORE, C.D.1
OLIVER, M.2
-
17
-
-
0032398933
-
Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds
-
F. H. LIN, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math., 51 (1998), pp. 385-441.
-
(1998)
Comm. Pure Appl. Math
, vol.51
, pp. 385-441
-
-
LIN, F.H.1
-
18
-
-
0033248349
-
On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation
-
F. H. LIN AND J. X. XIN, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Comm. Math. Phys., 200 (1999), pp. 249-274.
-
(1999)
Comm. Math. Phys
, vol.200
, pp. 249-274
-
-
LIN, F.H.1
XIN, J.X.2
-
19
-
-
0009228949
-
Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation
-
G. J. LORD, Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation, SIAM J. Numer. Anal., 34 (1997), pp. 1483-1512.
-
(1997)
SIAM J. Numer. Anal
, vol.34
, pp. 1483-1512
-
-
LORD, G.J.1
-
20
-
-
0041465981
-
Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite difference approximation to the Ginzburg-Landau equation
-
G. J. LORD AND A. M. STUART, Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite difference approximation to the Ginzburg-Landau equation, Numer. Funct. Anal. Optim., 16 (1995), pp. 1003-1047.
-
(1995)
Numer. Funct. Anal. Optim
, vol.16
, pp. 1003-1047
-
-
LORD, G.J.1
STUART, A.M.2
-
21
-
-
57049171510
-
-
C. LUBICH, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., (2008), S 0025-5718(08)02101-7.
-
C. LUBICH, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., (2008), S 0025-5718(08)02101-7.
-
-
-
-
22
-
-
0000598622
-
Vortices in complex scalar fields
-
J. C. NEU, Vortices in complex scalar fields, Phys. D, 43 (1990), pp. 407-420.
-
(1990)
Phys. D
, vol.43
, pp. 407-420
-
-
NEU, J.C.1
-
23
-
-
55349143887
-
-
A. C. NEWELL AND J. A. WHITEHEAD, Review of the finite bandwidth concept, in Proceedings of the International Union of Theoretical and Applied Mechanics, Symposium on Instability of Continuous Systems (1969), H. Leipholz, ed., Springer-Verlag, Berlin, 1971, pp. 279-303.
-
A. C. NEWELL AND J. A. WHITEHEAD, Review of the finite bandwidth concept, in Proceedings of the International Union of Theoretical and Applied Mechanics, Symposium on Instability of Continuous Systems (1969), H. Leipholz, ed., Springer-Verlag, Berlin, 1971, pp. 279-303.
-
-
-
-
24
-
-
0014662728
-
Finite bandwidth, finite amplitude convection
-
A. C. NEWELL AND J. A. WHITEHEAD, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38 (1969), pp. 279-303.
-
(1969)
J. Fluid Mech
, vol.38
, pp. 279-303
-
-
NEWELL, A.C.1
WHITEHEAD, J.A.2
-
25
-
-
0003172958
-
Pseudo-spectral solution of nonlinear Schrödinger equations
-
D. PATHRIA AND J. L. MORRIS, Pseudo-spectral solution of nonlinear Schrödinger equations, J. Comput. Phys., 87 (1990), pp. 108-125.
-
(1990)
J. Comput. Phys
, vol.87
, pp. 108-125
-
-
PATHRIA, D.1
MORRIS, J.L.2
-
26
-
-
0014560133
-
Distant side-walls cause slow amplitude modulation of celluar convection
-
L. A. SEGEL, Distant side-walls cause slow amplitude modulation of celluar convection, J. Fluid Mech., 38 (1969), pp. 203-224.
-
(1969)
J. Fluid Mech
, vol.38
, pp. 203-224
-
-
SEGEL, L.A.1
-
27
-
-
84959644006
-
A nonlinear instability theory for a wave system in plane Poiseuille flow
-
K. STEWARTSON AND J. T. STUART, A nonlinear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), pp. 529-549.
-
(1971)
J. Fluid Mech
, vol.48
, pp. 529-549
-
-
STEWARTSON, K.1
STUART, J.T.2
-
28
-
-
0034455222
-
A nonstiff Euler discretization of the complex Ginzburg-Landau equation in one space dimension
-
P. TAKÁČ AND A. JÜNGEL, A nonstiff Euler discretization of the complex Ginzburg-Landau equation in one space dimension, SIAM J. Numer. Anal., 38 (2000), pp. 292-328.
-
(2000)
SIAM J. Numer. Anal
, vol.38
, pp. 292-328
-
-
TAKÁČ, P.1
JÜNGEL, A.2
-
29
-
-
0031143725
-
Studies of phase turbulence in the onedimesional complex Ginzburg-Landau equation
-
A. TORCINI, H. FRAUENKRON, AND P. GRASSBERGER, Studies of phase turbulence in the onedimesional complex Ginzburg-Landau equation, Phys. Rev. E (3), 55, 1997, pp. 5073-5081.
-
(1997)
Phys. Rev. E
, vol.55
, Issue.3
, pp. 5073-5081
-
-
TORCINI, A.1
FRAUENKRON, H.2
GRASSBERGER, P.3
-
30
-
-
38049061810
-
The dynamics and interaction of quantized vortices in Ginzburg-Landau- Schrödinger equations
-
Y. ZHANG, W. BAO, AND Q. DU, The dynamics and interaction of quantized vortices in Ginzburg-Landau- Schrödinger equations, SIAM J. Appl. Math., 67 (2007), pp. 1740-1775.
-
(2007)
SIAM J. Appl. Math
, vol.67
, pp. 1740-1775
-
-
ZHANG, Y.1
BAO, W.2
DU, Q.3
|