-
1
-
-
0002934997
-
-
edited by R. K. Chang and A. J. Campillo (World Scientific, Singapore
-
S. T. Ho, in Optical Processes in Microcavities, edited by, R. K. Chang, and, A. J. Campillo, (World Scientific, Singapore, 1996), p. 339.
-
(1996)
Optical Processes in Microcavities
, pp. 339
-
-
Ho, S.T.1
-
2
-
-
17144432862
-
-
10.1103/PhysRevB.63.113311
-
S. Olivier, Phys. Rev. B 10.1103/PhysRevB.63.113311 63, 113311 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 113311
-
-
Olivier, S.1
-
4
-
-
28844492278
-
-
10.1103/PhysRevLett.95.183901
-
E. Viasnoff-Schwoob, Phys. Rev. Lett. 10.1103/PhysRevLett.95.183901 95, 183901 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 183901
-
-
Viasnoff-Schwoob, E.1
-
5
-
-
51849147507
-
-
10.1103/PhysRevLett.101.113903
-
T. Lund-Hansen, Phys. Rev. Lett. 10.1103/PhysRevLett.101.113903 101, 113903 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 113903
-
-
Lund-Hansen, T.1
-
6
-
-
2942748577
-
-
10.1364/OPEX.12.001569
-
E. Schwoob, Opt. Express 10.1364/OPEX.12.001569 12, 1569 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 1569
-
-
Schwoob, E.1
-
7
-
-
18244378261
-
-
10.1103/PhysRevLett.94.073903
-
H. Gersen, Phys. Rev. Lett. 10.1103/PhysRevLett.94.073903 94, 073903 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 073903
-
-
Gersen, H.1
-
9
-
-
33751020535
-
-
10.1103/PhysRevB.74.205111
-
H. H. Tao, Phys. Rev. B 10.1103/PhysRevB.74.205111 74, 205111 (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 205111
-
-
Tao, H.H.1
-
11
-
-
34547486876
-
-
10.1063/1.2763977
-
O. Khayam, Appl. Phys. Lett. 10.1063/1.2763977 91, 041111 (2007).
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 041111
-
-
Khayam, O.1
-
13
-
-
0001336971
-
-
10.1063/1.362419
-
H. Benisty, J. Appl. Phys. 10.1063/1.362419 79, 7483 (1996).
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 7483
-
-
Benisty, H.1
-
14
-
-
55349106313
-
-
The dispersion branch obeys the hyperbolic relation given by ω≅ c n (kz2 +4 m2 π2 /3W N2 a2) 1/2, where m is the branch number. The derivation of the minigap stripe hyperbola shall be published elsewhere.
-
The dispersion branch obeys the hyperbolic relation given by ω≅ c n (kz2 +4 m2 π2 /3W N2 a2) 1/2, where m is the branch number. The derivation of the minigap stripe hyperbola shall be published elsewhere.
-
-
-
-
15
-
-
55349118260
-
-
10.1364/JOSAB.25.0000C1
-
H. Kurt, J. Opt. Soc. Am. B 10.1364/JOSAB.25.0000C1 25, C1 (2008).
-
(2008)
J. Opt. Soc. Am. B
, vol.25
, pp. 1
-
-
Kurt, H.1
-
16
-
-
0000781318
-
-
10.1103/PhysRevB.54.17954
-
K. Nakada, Phys. Rev. B 10.1103/PhysRevB.54.17954 54, 17954 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17954
-
-
Nakada, K.1
-
17
-
-
51749099351
-
-
10.1103/PhysRevLett.101.115502
-
Pekka Koskinen, Phys. Rev. Lett. 10.1103/PhysRevLett.101.115502 101, 115502 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 115502
-
-
Koskinen, P.1
-
18
-
-
38549129293
-
-
10.1103/PhysRevB.77.035423
-
A. Isacsson, Phys. Rev. B 10.1103/PhysRevB.77.035423 77, 035423 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 035423
-
-
Isacsson, A.1
-
19
-
-
12144290380
-
-
10.1063/1.1644630
-
F. Pommereau, J. Appl. Phys. 10.1063/1.1644630 95, 2242 (2004).
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 2242
-
-
Pommereau, F.1
|