메뉴 건너뛰기




Volumn 82, Issue 1, 2009, Pages 155-167

Mining temporal interval relational rules from temporal data

Author keywords

Data mining; Interval temporal mining; Rule mining; Temporal data

Indexed keywords

ASSOCIATIVE PROCESSING; DATA MINING; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; KNOWLEDGE MANAGEMENT; MINING;

EID: 55249114576     PISSN: 01641212     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jss.2008.07.037     Document Type: Article
Times cited : (37)

References (42)
  • 1
    • 55249110243 scopus 로고    scopus 로고
    • Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In: The VLDB Conference, Santiago, Chile, September 1994.
    • Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In: The VLDB Conference, Santiago, Chile, September 1994.
  • 2
    • 0029212693 scopus 로고    scopus 로고
    • Agrawal, R., Srikant, R. 1995. Mining sequential patterns. In: International Conference on Data Engineering, Taipei, Taiwan.
    • Agrawal, R., Srikant, R. 1995. Mining sequential patterns. In: International Conference on Data Engineering, Taipei, Taiwan.
  • 3
    • 55249110030 scopus 로고    scopus 로고
    • Agrawal, R., King-Ip Lin, Harpreet, S. Sawhney, Kyuseok Shim, 1995b. Fast similarity search in the presence of noise, scaling, and translation in time series databases. In: The VLDB Conference, Zurich, Switzerland.
    • Agrawal, R., King-Ip Lin, Harpreet, S. Sawhney, Kyuseok Shim, 1995b. Fast similarity search in the presence of noise, scaling, and translation in time series databases. In: The VLDB Conference, Zurich, Switzerland.
  • 4
    • 55249090935 scopus 로고    scopus 로고
    • Ale, J.M., Rossi, G.H., 2000. An Approach to Discovering Temporal Association Rules. SAC'00, Italy.
    • Ale, J.M., Rossi, G.H., 2000. An Approach to Discovering Temporal Association Rules. SAC'00, Italy.
  • 5
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • Nov
    • Allen J. Maintaining knowledge about temporal intervals. Communications of the ACM 26 11 (1983) Nov
    • (1983) Communications of the ACM , vol.26 , Issue.11
    • Allen, J.1
  • 6
    • 0003247721 scopus 로고    scopus 로고
    • Discovering unexpected patterns in temporal data using temporal logic
    • Springer Verlag
    • Berger G., and Tuzhilin A. Discovering unexpected patterns in temporal data using temporal logic. Temporal Databases - Research and Practice (1998), Springer Verlag
    • (1998) Temporal Databases - Research and Practice
    • Berger, G.1    Tuzhilin, A.2
  • 8
    • 55249106970 scopus 로고    scopus 로고
    • Chen, X., Petrounias, I., 1998. A framework for temporal data mining. International Conference on Database and Expert Systems Applications.
    • Chen, X., Petrounias, I., 1998. A framework for temporal data mining. International Conference on Database and Expert Systems Applications.
  • 12
    • 55249119337 scopus 로고    scopus 로고
    • Minos, N., Garofalakis, Rajeev Rastogi, Kyuseok, Shim, 1999. SPIRIT: sequential pattern mining with regular expression constraints. In: The VLDB Conference, Edinburgh, Scotland, UK.
    • Minos, N., Garofalakis, Rajeev Rastogi, Kyuseok, Shim, 1999. SPIRIT: sequential pattern mining with regular expression constraints. In: The VLDB Conference, Edinburgh, Scotland, UK.
  • 15
    • 84976848527 scopus 로고
    • A consensus glossary of temporal database concepts
    • Jensen C.S., et al. A consensus glossary of temporal database concepts. ACM SIGMOD Record 23 1 (1994)
    • (1994) ACM SIGMOD Record , vol.23 , Issue.1
    • Jensen, C.S.1
  • 16
    • 27744497356 scopus 로고    scopus 로고
    • Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change
    • Jeremy M., and Wei L.J. Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Transactions in GIS 9 1 (2005)
    • (2005) Transactions in GIS , vol.9 , Issue.1
    • Jeremy, M.1    Wei, L.J.2
  • 19
    • 55249106560 scopus 로고    scopus 로고
    • Design and implementation of spatiotemporal database query processing system
    • December
    • Kim D.H., Ryu K.H., and Park C.H. Design and implementation of spatiotemporal database query processing system. Journal of Systems and Software (2001) December
    • (2001) Journal of Systems and Software
    • Kim, D.H.1    Ryu, K.H.2    Park, C.H.3
  • 24
    • 55249118287 scopus 로고    scopus 로고
    • Integration with spatiotemporal relationship operators in SQL
    • Lee J.Y., Oh K.J., and Ryu K.H. Integration with spatiotemporal relationship operators in SQL. ACM-GIS (1998)
    • (1998) ACM-GIS
    • Lee, J.Y.1    Oh, K.J.2    Ryu, K.H.3
  • 25
    • 0042850501 scopus 로고    scopus 로고
    • Progressive partition miner: an efficient algorithm for mining general temporal association rules
    • Lee C.H., Chen M.S., and Lin C.R. Progressive partition miner: an efficient algorithm for mining general temporal association rules. IEEE Transactions on Knowledge and Data Engineering 15 4 (2003)
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.4
    • Lee, C.H.1    Chen, M.S.2    Lin, C.R.3
  • 29
    • 55249111662 scopus 로고    scopus 로고
    • Pray, K.A., Ruiz, C., 2005. Mining expressive temporal associations from complex data. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany.
    • Pray, K.A., Ruiz, C., 2005. Mining expressive temporal associations from complex data. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany.
  • 32
    • 55249098249 scopus 로고    scopus 로고
    • Roddick, J.F., Hornsby, K., Spiliopoulou, M., 2000. Temporal, Spatial and Spatio-Temporal Data Mining and Knowledge Discovery Research Bibliography. .
    • Roddick, J.F., Hornsby, K., Spiliopoulou, M., 2000. Temporal, Spatial and Spatio-Temporal Data Mining and Knowledge Discovery Research Bibliography. .
  • 35
    • 0023366818 scopus 로고
    • The temporal query language TQuel
    • Snodgrass R. The temporal query language TQuel. ACM TODS 12 2 (1987)
    • (1987) ACM TODS , vol.12 , Issue.2
    • Snodgrass, R.1
  • 37
    • 1642409826 scopus 로고    scopus 로고
    • Fast algorithms for mining generalized frequent patterns of generalized association rules
    • Sriphaew K., and Theeramunkong T. Fast algorithms for mining generalized frequent patterns of generalized association rules. IEICE Transactions on Information and Systems 87 3 (2004)
    • (2004) IEICE Transactions on Information and Systems , vol.87 , Issue.3
    • Sriphaew, K.1    Theeramunkong, T.2
  • 38
    • 31444449276 scopus 로고    scopus 로고
    • Efficient calendar based temporal association rule
    • Verma K., and Vyas O.P. Efficient calendar based temporal association rule. ACM SIGMOD Record 34 3 (2005)
    • (2005) ACM SIGMOD Record , vol.34 , Issue.3
    • Verma, K.1    Vyas, O.P.2
  • 39
    • 2442446148 scopus 로고    scopus 로고
    • Wang, J., Han, J., 2004. Efficient mining of frequent closed sequences. In: 20th International Conference on Data Engineering, Boston, MA.
    • Wang, J., Han, J., 2004. Efficient mining of frequent closed sequences. In: 20th International Conference on Data Engineering, Boston, MA.
  • 40
    • 55249103264 scopus 로고    scopus 로고
    • Yan, X., Han, J., Afshar, R., 2003. CloSpan: mining closed sequential patterns in large datasets. In: Proceedings of International Conference on Data Mining(SDM03), San Fransisco, CA.
    • Yan, X., Han, J., Afshar, R., 2003. CloSpan: mining closed sequential patterns in large datasets. In: Proceedings of International Conference on Data Mining(SDM03), San Fransisco, CA.
  • 42
    • 0038148379 scopus 로고    scopus 로고
    • Mining association rules on significant rare data using relative support
    • Yun H., Ha D., Hwang B., and Ryu K. Mining association rules on significant rare data using relative support. Journal of Systems and Software (2003)
    • (2003) Journal of Systems and Software
    • Yun, H.1    Ha, D.2    Hwang, B.3    Ryu, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.