-
1
-
-
84896754098
-
Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract)
-
LATIN 2000: Theoretical informatics, G. H. Gonnet, D. Panario, and A. Viola, eds, Springer, Berlin
-
D. G. CORNEIL, M. HABIB, J.-M. LANLIGNEL, B. A. REED, AND U. ROTICS, Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract), in LATIN 2000: Theoretical informatics, G. H. Gonnet, D. Panario, and A. Viola, eds., Lecture Notes in Comput. Sci. 1776, Springer, Berlin, 2000, pp. 126-134.
-
(2000)
Lecture Notes in Comput. Sci
, vol.1776
, pp. 126-134
-
-
CORNEIL, D.G.1
HABIB, M.2
LANLIGNEL, J.-M.3
REED, B.A.4
ROTICS, U.5
-
2
-
-
0022162058
-
A linear recognition algorithm for cographs
-
D. G. CORNEIL, Y. PERL, AND L. K. STEWART, A linear recognition algorithm for cographs, SIAM J. Comput., 14 (1985), pp. 926-934.
-
(1985)
SIAM J. Comput
, vol.14
, pp. 926-934
-
-
CORNEIL, D.G.1
PERL, Y.2
STEWART, L.K.3
-
3
-
-
0034399867
-
Linear time solvable optimization problems on graphs of bounded clique-width
-
B. COURCELLE, J. A. MAKOWSKY, AND U. ROTICS, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp. 125-150.
-
(2000)
Theory Comput. Syst
, vol.33
, pp. 125-150
-
-
COURCELLE, B.1
MAKOWSKY, J.A.2
ROTICS, U.3
-
4
-
-
0002015577
-
Upper bounds to the clique, width of graphs
-
B. COURCELLE AND S. OLARIU, Upper bounds to the clique, width of graphs, Discrete Appl. Math., 101 (2000), pp. 77-114.
-
(2000)
Discrete Appl. Math
, vol.101
, pp. 77-114
-
-
COURCELLE, B.1
OLARIU, S.2
-
5
-
-
33751429952
-
Vertex-minors, monadic second-order logic, and a conjecture by Seese
-
B. COURCELLE AND S. OUM, Vertex-minors, monadic second-order logic, and a conjecture by Seese, J. Combin. Theory Ser. B, 97 (2007), pp. 91-126.
-
(2007)
J. Combin. Theory Ser. B
, vol.97
, pp. 91-126
-
-
COURCELLE, B.1
OUM, S.2
-
6
-
-
84945303807
-
How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time
-
Graph-Theoretic Concepts in Computer Science Boltenhagen, Springer, Berlin
-
W. ESPELAGE, P. GURSKI, AND E. WANKE, How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time, in Graph-Theoretic Concepts in Computer Science (Boltenhagen, 2001), Lecture Notes in Comput. Sci. 2204, Springer, Berlin, 2001, pp. 117-128.
-
(2001)
Lecture Notes in Comput. Sci
, vol.2204
, pp. 117-128
-
-
ESPELAGE, W.1
GURSKI, P.2
WANKE, E.3
-
7
-
-
33748114479
-
Clique-width minimization is NP-hard
-
ACM Press, New York
-
M. R. FELLOWS, F. A. ROSAMOND, U. ROTICS, AND S. SZEIDER, Clique-width minimization is NP-hard, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 2006, pp. 354-362.
-
(2006)
Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, pp. 354-362
-
-
FELLOWS, M.R.1
ROSAMOND, F.A.2
ROTICS, U.3
SZEIDER, S.4
-
8
-
-
0038349568
-
On the excluded minors for the matroids of branch-width κ
-
J. F. GEELEN, A. M. H. GERARDS. N. ROBERTSON, AND G. P. WHITTLE, On the excluded minors for the matroids of branch-width κ, J. Combin. Theory Ser. B, 88 (2003), pp. 261-265.
-
(2003)
J. Combin. Theory Ser. B
, vol.88
, pp. 261-265
-
-
GEELEN, J.F.1
GERARDS, A.M.H.2
ROBERTSON, N.3
WHITTLE, G.P.4
-
9
-
-
38049029854
-
Tangles, Tree-Decompositions, and Grids in Matroids
-
04-5, School of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington, New Zealand
-
J. F. GEELEN, A. M. H. GERARDS, AND G. WHITTLE, Tangles, Tree-Decompositions, and Grids in Matroids, Research report 04-5, School of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington, New Zealand, 2004.
-
(2004)
Research report
-
-
GEELEN, J.F.1
GERARDS, A.M.H.2
WHITTLE, G.3
-
10
-
-
0037453456
-
Algorithms for vertex-partitioning problems on graphs with fixed clique-width
-
M. U. GERBER AND D. KOBLER, Algorithms for vertex-partitioning problems on graphs with fixed clique-width, Theoret. Comput. Sci., 299 (2003), pp. 719-734.
-
(2003)
Theoret. Comput. Sci
, vol.299
, pp. 719-734
-
-
GERBER, M.U.1
KOBLER, D.2
-
11
-
-
34447316703
-
The branchwidth of graphs and their cycle matroids
-
I. V. HICKS AND N. B. MCMURRAY, JR., The branchwidth of graphs and their cycle matroids. J. Combin. Theory Ser. B, 97 (2007), pp. 681-692.
-
(2007)
J. Combin. Theory Ser. B
, vol.97
, pp. 681-692
-
-
HICKS, I.V.1
MCMURRAY JR., N.B.2
-
12
-
-
0038582500
-
-
Finite Geometries, Dev. Math. 3, Kluwer Academic Publishers, Dordrecht
-
J. W. P. HIRSCHFELD AND L. STORME, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, in Finite Geometries, Dev. Math. 3, Kluwer Academic Publishers, Dordrecht, 2001, pp. 201-246.
-
(2001)
The packing problem in statistics, coding theory and finite projective spaces: Update
, pp. 201-246
-
-
HIRSCHFELD, J.W.P.1
STORME, L.2
-
13
-
-
32144446394
-
A parametrized algorithm for matroid branch-width
-
P. HLINĚNÝ, A parametrized algorithm for matroid branch-width, SIAM J. Comput., 35 (2005), pp. 259-277.
-
(2005)
SIAM J. Comput
, vol.35
, pp. 259-277
-
-
HLINĚNÝ, P.1
-
14
-
-
33645920646
-
Branch-width, parse trees, and monadic second-order logic for matroids
-
P. HLINĚNÝ, Branch-width, parse trees, and monadic second-order logic for matroids, J. Combin. Theory Ser. B, 96 (2006), pp. 325-351.
-
(2006)
J. Combin. Theory Ser. B
, vol.96
, pp. 325-351
-
-
HLINĚNÝ, P.1
-
15
-
-
84867942957
-
Edge dominating set and colorings on graphs with fixed clique-width
-
D. KOBLER AND U. ROTICS, Edge dominating set and colorings on graphs with fixed clique-width, Discrete Appl. Math., 126 (2003), pp. 197-221.
-
(2003)
Discrete Appl. Math
, vol.126
, pp. 197-221
-
-
KOBLER, D.1
ROTICS, U.2
-
16
-
-
55249119272
-
-
F. MAZOIT AND S. THOMASSÉ, Branchwidth of graphic matroids, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 346, Cambridge University Press, Cambridge, 2007, pp. 275-286.
-
F. MAZOIT AND S. THOMASSÉ, Branchwidth of graphic matroids, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 346, Cambridge University Press, Cambridge, 2007, pp. 275-286.
-
-
-
-
17
-
-
23244468510
-
Rank-width and vertex-minors
-
S. OUM, Rank-width and vertex-minors, J. Combin. Theory Ser. B, 95 (2005), pp. 79-100.
-
(2005)
J. Combin. Theory Ser. B
, vol.95
, pp. 79-100
-
-
OUM, S.1
-
18
-
-
55249090640
-
Approximating rank-width and clique-width quickly
-
submitted
-
S. OUM, Approximating rank-width and clique-width quickly, submitted, 2006.
-
(2006)
-
-
OUM, S.1
-
19
-
-
32544455938
-
Approximating clique-width and branch-width
-
S. OUM AND P. SEYMOUR, Approximating clique-width and branch-width, J. Combin. Theory Ser. B, 96 (2006), pp. 514-528.
-
(2006)
J. Combin. Theory Ser. B
, vol.96
, pp. 514-528
-
-
OUM, S.1
SEYMOUR, P.2
-
21
-
-
0004061262
-
-
Oxford University Press, New York
-
J. G. OXLEY, Matroid Theory, Oxford University Press, New York, 1992.
-
(1992)
Matroid Theory
-
-
OXLEY, J.G.1
-
23
-
-
0038521887
-
Call routing and the ratcatcher
-
P. SEYMOUR AND R. THOMAS, Call routing and the ratcatcher, Combinatorica, 14 (1994), pp. 217-241.
-
(1994)
Combinatorica
, vol.14
, pp. 217-241
-
-
SEYMOUR, P.1
THOMAS, R.2
-
24
-
-
0039301943
-
κ-NLC graphs and polynomial algorithms. Efficient algorithms and partial κ-trees
-
F. WANKE, κ-NLC graphs and polynomial algorithms. Efficient algorithms and partial κ-trees, Discrete Appl. Math., 54 (1994), pp. 251-266.
-
(1994)
Discrete Appl. Math
, vol.54
, pp. 251-266
-
-
WANKE, F.1
|