메뉴 건너뛰기




Volumn 71, Issue 13-15, 2008, Pages 2433-2445

Interpolating support information granules

Author keywords

Algorithmic Inference; Granular Computing; Kernel methods; Linear regression confidence region; Modified SVM

Indexed keywords

BENCHMARKING; GRANULAR COMPUTING; GRANULATION; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 54849420841     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.11.038     Document Type: Article
Times cited : (11)

References (37)
  • 2
    • 33745793527 scopus 로고    scopus 로고
    • Learning continuous functions through a new linear regression method
    • B. Apolloni, M. Marinaro, R. Tagliaferri Eds, Springer, Berlin
    • B. Apolloni, S. Bassis, S. Gaito, D. Iannizzi, D. Malchiodi, Learning continuous functions through a new linear regression method, in: B. Apolloni, M. Marinaro, R. Tagliaferri (Eds.), Biological and Artificial Intelligence Environments, Springer, Berlin, 2005, pp. 235-243.
    • (2005) Biological and Artificial Intelligence Environments , pp. 235-243
    • Apolloni, B.1    Bassis, S.2    Gaito, S.3    Iannizzi, D.4    Malchiodi, D.5
  • 3
    • 34249860108 scopus 로고    scopus 로고
    • Appreciation of medical treatments by learning underlying functions with good confidence
    • B. Apolloni, S. Bassis, S. Gaito, D. Malchiodi, Appreciation of medical treatments by learning underlying functions with good confidence, Curr. Pharm. Des. 13 (15) (2007) 1545-1570.
    • (2007) Curr. Pharm. Des , vol.13 , Issue.15 , pp. 1545-1570
    • Apolloni, B.1    Bassis, S.2    Gaito, S.3    Malchiodi, D.4
  • 4
    • 33745780517 scopus 로고    scopus 로고
    • Granular regression
    • B. Apolloni, M. Marinaro, R. Tagliaferri Eds, Proceedings of WIRN, Springer, Berlin
    • B. Apolloni, D. Iannizzi, D. Malchiodi, W. Pedrycz, Granular regression, in: B. Apolloni, M. Marinaro, R. Tagliaferri (Eds.), Proceedings of WIRN 2005, Lecture Notes in Computer Science, Springer, Berlin, 2006, pp. 147-156.
    • (2005) Lecture Notes in Computer Science , pp. 147-156
    • Apolloni, B.1    Iannizzi, D.2    Malchiodi, D.3    Pedrycz, W.4
  • 11
    • 0004197396 scopus 로고    scopus 로고
    • Fuzzy sets and probability: Misunderstandings bridges and gaps
    • D. Dubois, H. Prade Eds, Kluwer, Boston
    • D. Dubois, H. Nguyen, H. Prade, Fuzzy sets and probability: misunderstandings bridges and gaps, in: D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, Kluwer, Boston, 2000, pp. 343-438.
    • (2000) Fundamentals of Fuzzy Sets , pp. 343-438
    • Dubois, D.1    Nguyen, H.2    Prade, H.3
  • 13
    • 45949116219 scopus 로고
    • Properties of measures of information in evidence and possibility theories
    • special issue: Measures of Uncertainty
    • D. Dubois, H. Prade, Properties of measures of information in evidence and possibility theories, Fuzzy Sets and Systems 24 (2) (1987) 161-182 (special issue: Measures of Uncertainty).
    • (1987) Fuzzy Sets and Systems , vol.24 , Issue.2 , pp. 161-182
    • Dubois, D.1    Prade, H.2
  • 16
    • 22344440204 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern recognition and data mining
    • H. Huang, Y. Liu, Fuzzy support vector machines for pattern recognition and data mining, Int. J. Fuzzy Syst. 4 (3) (2002) 826-835.
    • (2002) Int. J. Fuzzy Syst , vol.4 , Issue.3 , pp. 826-835
    • Huang, H.1    Liu, Y.2
  • 19
    • 84890629825 scopus 로고    scopus 로고
    • online, accessed April 2005
    • National Institute of Standards and Technology, StRD dataset Norris, (online, accessed April 2005).
    • StRD dataset Norris
  • 21
    • 33745765336 scopus 로고    scopus 로고
    • Granular computing in data mining
    • M. Last, A. Kandel Eds, Springer, Berlin
    • W. Pedrycz, Granular computing in data mining, in: M. Last, A. Kandel (Eds.), Data Mining & Computational Intelligence, Springer, Berlin, 2001, pp. 37-61.
    • (2001) Data Mining & Computational Intelligence , pp. 37-61
    • Pedrycz, W.1
  • 23
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans Eds, MIT Press, Cambridge, MA
    • J. Platt, Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, in: A. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, 2000, pp. 61-74.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 25
    • 0037252858 scopus 로고    scopus 로고
    • Rough fuzzy MLP: Modular evolution, rule generation and evaluation
    • K. Sankar, S. Mitra, P. Mitra, Rough fuzzy MLP: Modular evolution, rule generation and evaluation, IEEE Trans. Knowl. Data Eng. 15(1).
    • IEEE Trans. Knowl. Data Eng , vol.15 , Issue.1
    • Sankar, K.1    Mitra, S.2    Mitra, P.3
  • 26
    • 0001875235 scopus 로고
    • Evaluation of fuzzy regression models
    • D. Savic, W. Pedrycz, Evaluation of fuzzy regression models, Fuzzy Sets Syst. 39 (1991) 51-63.
    • (1991) Fuzzy Sets Syst , vol.39 , pp. 51-63
    • Savic, D.1    Pedrycz, W.2
  • 30
    • 0242552618 scopus 로고    scopus 로고
    • Fuzzy support vector machine for regression estimation
    • Z. Sun, Y. Sun, Fuzzy support vector machine for regression estimation, IEEE Int. Conf. Syst. Man and Cybern. 4 (2003) 3336-3341.
    • (2003) IEEE Int. Conf. Syst. Man and Cybern , vol.4 , pp. 3336-3341
    • Sun, Z.1    Sun, Y.2
  • 31
  • 34
    • 33746602244 scopus 로고    scopus 로고
    • Fuzzy classification by fuzzy labeled neural gas
    • special issue: Advances in Self-Organizing Maps
    • T. Villmann, B. Hammer, F. Schleif, T. Geweniger, W. Herrmann, Fuzzy classification by fuzzy labeled neural gas, Neural Networks. 19 (6) (2006) 772-779 (special issue: Advances in Self-Organizing Maps).
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 772-779
    • Villmann, T.1    Hammer, B.2    Schleif, F.3    Geweniger, T.4    Herrmann, W.5
  • 35
    • 33749399974 scopus 로고    scopus 로고
    • T. Villmann, F. Schleif, B. Hammer, Fuzzy labeled soft nearest neighbor classification with relevance learning, in: Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA'05), 00, IEEE Computer Society, Washington, DC, 2005, pp. 11-15.
    • T. Villmann, F. Schleif, B. Hammer, Fuzzy labeled soft nearest neighbor classification with relevance learning, in: Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA'05), vol. 00, IEEE Computer Society, Washington, DC, 2005, pp. 11-15.
  • 36
    • 0005013141 scopus 로고    scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • L. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 100 (1999) 9-34.
    • (1999) Fuzzy Sets Syst , vol.100 , pp. 9-34
    • Zadeh, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.