메뉴 건너뛰기




Volumn 19, Issue 5-6, 2008, Pages 359-373

Adaptive video communication for an intelligent distributed system: Tuning sensors parameters for surveillance purposes

Author keywords

Multi sensors; Surveillance; Transmission

Indexed keywords

ADAPTIVE SYSTEMS; BANDWIDTH; IMAGE CODING; IMAGE COMMUNICATION SYSTEMS; INTELLIGENT SYSTEMS; NETWORK ARCHITECTURE; NETWORK PROTOCOLS; OBJECT RECOGNITION; SENSOR NETWORKS; SENSORS; WIRELESS NETWORKS;

EID: 54849393000     PISSN: 09328092     EISSN: 14321769     Source Type: Journal    
DOI: 10.1007/s00138-007-0069-z     Document Type: Article
Times cited : (8)

References (29)
  • 2
    • 0030212173 scopus 로고    scopus 로고
    • A comparison of different coding formats for digital coding of video using mpeg-2
    • 8
    • G. Bjontegaard K. Lillevold R. Danielsen 1996 A comparison of different coding formats for digital coding of video using mpeg-2 IEEE Trans Image Process 5 8 1271 1276
    • (1996) IEEE Trans Image Process , vol.5 , pp. 1271-1276
    • Bjontegaard, G.1    Lillevold, K.2    Danielsen, R.3
  • 3
    • 0000097352 scopus 로고    scopus 로고
    • Algorithms for cooperative multisensor surveillance
    • R. Collins A. Lipton H. Fujiyoshi T. Kanade 2001 Algorithms for cooperative multisensor surveillance Proc IEEE 89 1456 1477
    • (2001) Proc IEEE , vol.89 , pp. 1456-1477
    • Collins, R.1    Lipton, A.2    Fujiyoshi, H.3    Kanade, T.4
  • 5
    • 0035474775 scopus 로고    scopus 로고
    • Automatic image segmentation by integrating color-edge extractionand seeded region growing
    • 10
    • J. Fan D. Yau A. Elmagarmid W. Aref 2001 Automatic image segmentation by integrating color-edge extractionand seeded region growing IEEE Trans Image Process 10 10 1454 1466
    • (2001) IEEE Trans Image Process , vol.10 , pp. 1454-1466
    • Fan, J.1    Yau, D.2    Elmagarmid, A.3    Aref, W.4
  • 6
    • 1842430911 scopus 로고    scopus 로고
    • Adaptive high-order neural trees for pattern recognitionadaptive high-order neural trees for pattern recognition
    • 2
    • G. Foresti T. Dolso 2004 Adaptive high-order neural trees for pattern recognitionadaptive high-order neural trees for pattern recognition IEEE Trans Syst Man Cybern Part B 34 2 988 996
    • (2004) IEEE Trans Syst Man Cybern Part B , vol.34 , pp. 988-996
    • Foresti, G.1    Dolso, T.2
  • 8
    • 67650349273 scopus 로고    scopus 로고
    • Scanning the issue technology-special issue on video communications, processing and understanding for third generation surveillance systems
    • 10
    • G. Foresti C. Regazzoni R. Visvanathan 2001 Scanning the issue technology-special issue on video communications,processing and understanding for third generation surveillance systems Proc IEEE 89 10 1355 1367
    • (2001) Proc IEEE , vol.89 , pp. 1355-1367
    • Foresti, G.1    Regazzoni, C.2    Visvanathan, R.3
  • 14
    • 0034245366 scopus 로고    scopus 로고
    • Recognition of visual activities and interactions by stochastic parsing
    • 8
    • Y.A. Ivanov A.F. Bobick 2000 Recognition of visual activities and interactions by stochastic parsing IEEE Trans Pattern Anal Mach Intell 22 8 852 872
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , pp. 852-872
    • Ivanov, Y.A.1    Bobick, A.F.2
  • 15
    • 0022266928 scopus 로고
    • A new method for gray-level picture thresholding using the entropy of the histogram
    • J.N. Kapur P.K. Sahoo A.K.C. Wong 1985 A new method for gray-level picture thresholding using the entropy of the histogram Graph Models Image Process 29 273 285
    • (1985) Graph Models Image Process , vol.29 , pp. 273-285
    • Kapur, J.N.1    Sahoo, P.K.2    Wong, A.K.C.3
  • 17
    • 20444410793 scopus 로고    scopus 로고
    • Learning semantic scene models from observing activity in visual surveillance
    • 3
    • D. Makris T. Ellis 2005 Learning semantic scene models from observing activity in visual surveillance IEEE Trans Syst Man Cybern Part B: Cybern 35 3 397 408
    • (2005) IEEE Trans Syst Man Cybern Part B: Cybern , vol.35 , pp. 397-408
    • Makris, D.1    Ellis, T.2
  • 19
    • 0018306059 scopus 로고
    • A threshold selection method from gray level histograms
    • N. Otsu 1979 A threshold selection method from gray level histograms IEEE Trans Syst Man Cybern SMC- 9 62 66
    • (1979) IEEE Trans Syst Man Cybern SMC , vol.9 , pp. 62-66
    • Otsu, N.1
  • 22
    • 0018004847 scopus 로고
    • Picture thresholding using an iterative selection method
    • T.W. Ridler S. Calvard 1978 Picture thresholding using an iterative selection method IEEE Trans Syst Man Cybern SMC- 8 630 632
    • (1978) IEEE Trans Syst Man Cybern SMC , vol.8 , pp. 630-632
    • Ridler, T.W.1    Calvard, S.2
  • 24
    • 0037410624 scopus 로고    scopus 로고
    • Real-time thresholding with Euler numbers
    • 9-10
    • L. Snidaro G. Foresti 2003 Real-time thresholding with Euler numbers Pattern Recogn Lett 24 9-10 1533 1544
    • (2003) Pattern Recogn Lett , vol.24 , pp. 1533-1544
    • Snidaro, L.1    Foresti, G.2
  • 25
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • 8
    • C. Stauffer W.E.L. Grimson 2000 Learning patterns of activity using real-time tracking IEEE Pattern Anal Mach Intell 22 8 747 757
    • (2000) IEEE Pattern Anal Mach Intell , vol.22 , pp. 747-757
    • Stauffer, C.1    Grimson, W.E.L.2
  • 26
    • 0031097898 scopus 로고    scopus 로고
    • High-order and multilayer perceptron initialization
    • 2
    • G. Thimm E. Fiesler 1997 High-order and multilayer perceptron initialization IEEE Trans Neural Netw 8 2 349 359
    • (1997) IEEE Trans Neural Netw , vol.8 , pp. 349-359
    • Thimm, G.1    Fiesler, E.2
  • 28
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods: A survey
    • B. Zitova J. Flusser 2003 Image registration methods: a survey Image Vis Comput 21 977 1000
    • (2003) Image Vis Comput , vol.21 , pp. 977-1000
    • Zitova, B.1    Flusser, J.2
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.