메뉴 건너뛰기




Volumn 28, Issue 9, 2008, Pages 2009-2013

Hyperspectral remote sensing image classification based on radical basis function neural network

Author keywords

Classification; Hyperspectral remote sensing image; Radial basis function neural network (RBFNN)

Indexed keywords


EID: 54749092940     PISSN: 10000593     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (15)

References (18)
  • 2
    • 54749126116 scopus 로고    scopus 로고
    • A comparative study of radial basis function neural networks and wavelet neural networks in classification of remotely sensed data, world automation congress
    • Hung C C, Kim Y, Coleman T L. A Comparative Study of Radial Basis Function Neural Networks and Wavelet Neural Networks in Classification of Remotely Sensed Data, World Automation Congress, 2002. Proceedings of the 5th Biannual, 2002, 13: 9.
    • (2002) Proceedings of the 5th Biannual , vol.13 , pp. 9
    • Hung, C.C.1    Kim, Y.2    Coleman, T.L.3
  • 16
    • 0001290987 scopus 로고    scopus 로고
    • Automated spectral analysis: A geological example using AVIRIS data-north grapevine mountains
    • Environmental Research Institute of Michigan, Ann Arbor, MI, I-407
    • Boardman J W, Kruse F A. Automated Spectral Analysis: A Geological Example Using AVIRIS Data-North Grapevine Mountains. Nevada: In Proceeding, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, I-407.
    • Nevada: In Proceeding, ERIM Tenth Thematic Conference on Geologic Remote Sensing
    • Boardman, J.W.1    Kruse, F.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.