-
1
-
-
0002387490
-
Random self-similar multifractals
-
[AP] M. ARBEITER and N. PATZSCHKE, Random self-similar multifractals Math. Nachr. 181 (1996), 5-42.
-
(1996)
Math. Nachr.
, vol.181
, pp. 5-42
-
-
Arbeiter, M.1
Patzschke, N.2
-
3
-
-
44049118235
-
Multifractal decomposition of Moran fractals
-
R. CAWLEY and R. D. MAULDIN, Multifractal decomposition of Moran fractals, Advances in Mathematics 92 (1992), 196-236.
-
(1992)
Advances in Mathematics
, vol.92
, pp. 196-236
-
-
Cawley, R.1
Mauldin, R.D.2
-
6
-
-
0003211662
-
Analysis of and on uniformly rectifiable sets
-
American Mathematical Society, Providence, RI
-
[DS] G. DAVID and S. SEMMES, Analysis Of and On Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, 38. American Mathematical Society, Providence, RI, 1993.
-
(1993)
Mathematical Surveys and Monographs
, vol.38
-
-
David, G.1
Semmes, S.2
-
7
-
-
84962991716
-
Multifractal decompositions of digraph recursive fractals
-
[EM] G. A. EDGAR and R. D. MAULDIN, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 604-628.
-
(1992)
Proc. London Math. Soc.
, vol.65
, pp. 604-628
-
-
Edgar, G.A.1
Mauldin, R.D.2
-
11
-
-
84975964787
-
On the dimension of product measures
-
[Ha2] H. HAASE, On the dimension of product measures, Mathematika 37 (1990), 316-323.
-
(1990)
Mathematika
, vol.37
, pp. 316-323
-
-
Haase, H.1
-
12
-
-
3342916075
-
Fractal measures and their singularities: The characterization of strange sets
-
[HJKPS] T. C. HALSEY, M. H. JENSEN, L. P. KADANOEF, I. PROCACCIA and B. J. SHRAIMAN, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33 (1986), 1141-1151.
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1141-1151
-
-
Halsey, T.C.1
Jensen, M.H.2
Kadanoef, L.P.3
Procaccia, I.4
Shraiman, B.J.5
-
13
-
-
54749109648
-
On Hausdorff and packing dimension of product spaces
-
to appear
-
[Ho] J. HOWROYD, On Hausdorff and packing dimension of product spaces, Math. Proc. Camb. Phil. Soc. (to appear).
-
Math. Proc. Camb. Phil. Soc.
-
-
Howroyd, J.1
-
15
-
-
77956809951
-
Sur la dimension des intersections
-
ed. J. A. Barroso, Elsevier Science Publishers B. V.
-
[Ka] J.-P. KAHANE, Sur la dimension des intersections, in Aspects of Mathematics and its Applications, ed. J. A. Barroso, Elsevier Science Publishers B. V. 1986, pp. 419-430.
-
(1986)
Aspects of Mathematics and Its Applications
, pp. 419-430
-
-
Kahane, J.-P.1
-
17
-
-
0000921510
-
Singularity spectrum for recurrent IFS attractors
-
[KG] J. KING and J. S. GERONIMO, Singularity spectrum for recurrent IFS attractors, Nonlinearity 6 (1992), 337-348.
-
(1992)
Nonlinearity
, vol.6
, pp. 337-348
-
-
King, J.1
Geronimo, J.S.2
-
18
-
-
0009126883
-
p-spectrum and multifractal formalism
-
Proceedings, Fractal Geometry and Stochastics, Finsterbergen, Germany, June. (Editors C. Bandt, S. Graf and M. Zähle). Birkhäuser Verlag
-
p-spectrum and multifractal formalism, Proceedings, Fractal Geometry and Stochastics, Finsterbergen, Germany, June, 1994. Progess in Probability 37 (Editors C. Bandt, S. Graf and M. Zähle), pp. 55-90. Birkhäuser Verlag, 1995.
-
(1994)
Progess in Probability
, vol.37
, pp. 55-90
-
-
Lau, K.S.1
-
19
-
-
0008998845
-
The dimension spectrum of the maximal measure
-
[Lo1] A. O. LOPES, The dimension spectrum of the maximal measure SIAM jour. Math. Anat. 20 (1989), 1243-1254.
-
(1989)
SIAM Jour. Math. Anat.
, vol.20
, pp. 1243-1254
-
-
Lopes, A.O.1
-
20
-
-
38249016198
-
Dimension spectra and a mathematical model for phase transition
-
[Lo2] A. O. LOPES, Dimension spectra and a mathematical model for phase transition Advances in Applied Mathematics 1 (1990), 475-502.
-
(1990)
Advances in Applied Mathematics
, vol.1
, pp. 475-502
-
-
Lopes, A.O.1
-
22
-
-
0013167960
-
The dimension of Cartesian product sets
-
[Mar1] J. M. MARSTRAND, The dimension of Cartesian product sets, Proc. Lond. Math. Soc. 50 (1954), 198-206.
-
(1954)
Proc. Lond. Math. Soc.
, vol.50
, pp. 198-206
-
-
Marstrand, J.M.1
-
23
-
-
84963103615
-
Some fundamental geometrical properties of plane sets of fractional dimensions
-
[Mar2] J. M. MARSTRAND, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. Lond. Math. Soc. 4 (1954), 257-302.
-
(1954)
Proc. Lond. Math. Soc.
, vol.4
, pp. 257-302
-
-
Marstrand, J.M.1
-
24
-
-
0000367680
-
Hausdorff dimension, othogonal projections and intersections with planes
-
[Mat1] P. MATTILA, Hausdorff dimension, othogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Series A. I. Mathematica 1 (1975), 227-244.
-
(1975)
Ann. Acad. Sci. Fenn. Series A. I. Mathematica
, vol.1
, pp. 227-244
-
-
Mattila, P.1
-
25
-
-
0003023698
-
Hausdorff dimension and capacities of intersections of sets in n-space
-
[Mat2] P. MATTILA, Hausdorff dimension and capacities of intersections of sets in n-space, Acta Math. 152 (1984), 77-105.
-
(1984)
Acta Math.
, vol.152
, pp. 77-105
-
-
Mattila, P.1
-
28
-
-
85027614017
-
A multifractal formalism
-
[OI1] L. OLSEN, A multifractal formalism, Advances in Mathematics 116 (1995), 82-196.
-
(1995)
Advances in Mathematics
, vol.116
, pp. 82-196
-
-
Olsen, L.1
-
31
-
-
21444435010
-
Multifractal dimensions of product measures
-
[OI4] L. OLSEN, Multifractal dimensions of product measures, Math. Proc. Camb. Phil. Soc. 120 (1996), 709-734.
-
(1996)
Math. Proc. Camb. Phil. Soc.
, vol.120
, pp. 709-734
-
-
Olsen, L.1
-
37
-
-
0001334913
-
Dimension type characteristics for invariant sets of dynamical systems
-
[Pes1] Y. PESIN, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys 43 (1988), 111-151.
-
(1988)
Russian Math. Surveys
, vol.43
, pp. 111-151
-
-
Pesin, Y.1
-
38
-
-
0039792757
-
Generalized spectrum for the dimension: The approach based on Carathéodory's construction
-
World Sci. Publishing, Teaneck
-
[Pes2] Y. PESIN, Generalized spectrum for the dimension: the approach based on Carathéodory's construction, in: Constantin Carathéodory: an international tribute, pp. 1108-1119, World Sci. Publishing, Teaneck, 1991.
-
(1991)
Constantin Carathéodory: An International Tribute
, pp. 1108-1119
-
-
Pesin, Y.1
-
39
-
-
0003318042
-
Multifractal measures
-
Il Ciocco, NATO ASI Series, Series C: Mathematical and Physical Sciences, Kluwer Academic Press, Dordrecht
-
[Pe] J. PEYRIÉRE, Multifractal measures, Proceedings of the NATO Advanced Study Institute on Probablistic and Stochastic Methods in Analysis with Applications, Il Ciocco, pp. 175-186, NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol 372, Kluwer Academic Press, Dordrecht, 1992.
-
(1992)
Proceedings of the NATO Advanced Study Institute on Probablistic and Stochastic Methods in Analysis with Applications
, vol.372
, pp. 175-186
-
-
Peyriére, J.1
-
40
-
-
21444441654
-
A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions
-
[PW] Y. PESIN and H. WEISS, A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions, J. Statist. Phys. 86 (1997), 233-275.
-
(1997)
J. Statist. Phys.
, vol.86
, pp. 233-275
-
-
Pesin, Y.1
Weiss, H.2
-
41
-
-
84974252535
-
The singularity spectrum f(α) for cookie-cutters
-
[Ra] D. RAND, The singularity spectrum f(α) for cookie-cutters, Ergodic Theory and Dynamical Systems 9 (1989), 527-541.
-
(1989)
Ergodic Theory and Dynamical Systems
, vol.9
, pp. 527-541
-
-
Rand, D.1
-
44
-
-
0004136765
-
-
Princeton University Press
-
[St] E. STEIN, Harmonic Analysis, Princeton University Press, 1993.
-
(1993)
Harmonic Analysis
-
-
Stein, E.1
-
45
-
-
84966224394
-
Packing measure, and its evaluation for a Brownian path
-
[TT] S. J. TAYLOR and C. TRICOT, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699.
-
(1985)
Trans. Amer. Math. Soc.
, vol.288
, pp. 679-699
-
-
Taylor, S.J.1
Tricot, C.2
-
46
-
-
84971877468
-
Two definitions of fractional dimension
-
[Tr] C. TRICOT, Two definitions of fractional dimension Math. Proc. Camb. Phil. Soc. 91 (1982), 57-74.
-
(1982)
Math. Proc. Camb. Phil. Soc.
, vol.91
, pp. 57-74
-
-
Tricot, C.1
|