메뉴 건너뛰기




Volumn 160, Issue 2, 2009, Pages 145-161

Extracting symbolic knowledge from recurrent neural networks-A fuzzy logic approach

Author keywords

All permutations fuzzy rule base; Formal language; Hybrid intelligent systems; Knowledge extraction; Knowledge based neurocomputing; Neuro fuzzy systems; Recurrent neural networks; Regular grammar; Rule extraction; Rule generation

Indexed keywords

ARTIFICIAL INTELLIGENCE; ELECTRIC FAULT LOCATION; FORMAL LANGUAGES; FUZZY LOGIC; FUZZY NEURAL NETWORKS; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; INTELLIGENT SYSTEMS; KNOWLEDGE BASED SYSTEMS; LINGUISTICS; NETWORK PROTOCOLS; NEURAL NETWORKS; REINFORCEMENT LEARNING; SENSOR NETWORKS;

EID: 54549100404     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2008.05.005     Document Type: Article
Times cited : (20)

References (67)
  • 1
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R., Diederich J., and Tickle A.B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8 (1995) 373-389
    • (1995) Knowledge-Based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 2
    • 0028202641 scopus 로고
    • An evolutionary algorithm that constructs recurrent neural networks
    • Angeline P.J., Saunders G.M., and Pollack J.B. An evolutionary algorithm that constructs recurrent neural networks. Neural Comput. 5 (1994) 54-65
    • (1994) Neural Comput. , vol.5 , pp. 54-65
    • Angeline, P.J.1    Saunders, G.M.2    Pollack, J.B.3
  • 6
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Castro J.L., Mantas C.J., and Benitez J.M. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans. Neural Networks 13 (2002) 101-116
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.M.3
  • 7
    • 0004449398 scopus 로고
    • Three models for the description of language
    • Chomsky N. Three models for the description of language. IRE Trans. Inform. Theory IT-2 (1956) 113-124
    • (1956) IRE Trans. Inform. Theory , vol.IT-2 , pp. 113-124
    • Chomsky, N.1
  • 8
    • 77956972992 scopus 로고
    • The algebraic theory of context-free languages
    • Bradford P., and Hirschberg D. (Eds), North-Holland, Amsterdam
    • Chomsky N., and Schützenberger M.P. The algebraic theory of context-free languages. In: Bradford P., and Hirschberg D. (Eds). Computer Programming and Formal Systems (1963), North-Holland, Amsterdam 118-161
    • (1963) Computer Programming and Formal Systems , pp. 118-161
    • Chomsky, N.1    Schützenberger, M.P.2
  • 9
    • 54549114083 scopus 로고    scopus 로고
    • I. Cloete, J.M. Zurada (Eds.), Knowledge-Based Neurocomputing, MIT Press, Cambridge, MA, 2000.
    • I. Cloete, J.M. Zurada (Eds.), Knowledge-Based Neurocomputing, MIT Press, Cambridge, MA, 2000.
  • 10
    • 0038611767 scopus 로고    scopus 로고
    • Introduction: the real contribution of fuzzy systems
    • Nguyen H.T., and Sugeno M. (Eds), Kluwer, Dordrecht
    • Dubois D., Nguyen H.T., Prade H., and Sugeno M. Introduction: the real contribution of fuzzy systems. In: Nguyen H.T., and Sugeno M. (Eds). Fuzzy Systems: Modeling and Control (1998), Kluwer, Dordrecht 1-17
    • (1998) Fuzzy Systems: Modeling and Control , pp. 1-17
    • Dubois, D.1    Nguyen, H.T.2    Prade, H.3    Sugeno, M.4
  • 11
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite-state automata in recurrent radial basis function networks
    • Frasconi P., Gori M., Maggini M., and Soda G. Representation of finite-state automata in recurrent radial basis function networks. Mach. Learn. 23 (1996) 5-32
    • (1996) Mach. Learn. , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 12
    • 0006012517 scopus 로고    scopus 로고
    • Learning capacity and sample complexity on expert networks
    • Fu L.M. Learning capacity and sample complexity on expert networks. IEEE Trans. Neural Networks 7 (1996) 1517-1520
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1517-1520
    • Fu, L.M.1
  • 13
    • 0023962833 scopus 로고
    • Connectionist expert systems
    • Gallant S.I. Connectionist expert systems. Commun. ACM 31 (1988) 152-169
    • (1988) Commun. ACM , vol.31 , pp. 152-169
    • Gallant, S.I.1
  • 14
    • 0035399722 scopus 로고    scopus 로고
    • Noisy time series prediction using recurrent neural networks and grammatical inference
    • Giles C.L., Lawrence S., and Tsoi A.C. Noisy time series prediction using recurrent neural networks and grammatical inference. Mach. Learn. 44 (2001) 161-183
    • (2001) Mach. Learn. , vol.44 , pp. 161-183
    • Giles, C.L.1    Lawrence, S.2    Tsoi, A.C.3
  • 15
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • Giles C.L., Miller C.B., Chen D., Chen H.H., Sun G.Z., and Lee Y.C. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comput. 4 (1992) 393-405
    • (1992) Neural Comput. , vol.4 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 16
    • 0032074270 scopus 로고    scopus 로고
    • Inductive inference from noisy examples using the hybrid finite state filter
    • Gori M., Maggini M., Martinelli E., and Soda G. Inductive inference from noisy examples using the hybrid finite state filter. IEEE Trans. Neural Networks 9 (1998) 571-575
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 571-575
    • Gori, M.1    Maggini, M.2    Martinelli, E.3    Soda, G.4
  • 17
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: an interpretability-oriented review
    • Guillaume S. Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans. Fuzzy Systems 9 3 (2001) 426-443
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 19
    • 1542321252 scopus 로고    scopus 로고
    • Structural learning and rule discovery
    • Cloete I., and Zurada J.M. (Eds), Kluwer, Dordrecht
    • Ishikawa M. Structural learning and rule discovery. In: Cloete I., and Zurada J.M. (Eds). Knowledge-Based Neurocomputing (2000), Kluwer, Dordrecht 153-206
    • (2000) Knowledge-Based Neurocomputing , pp. 153-206
    • Ishikawa, M.1
  • 20
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: a taxonomy and review
    • Jacobsson H. Rule extraction from recurrent neural networks: a taxonomy and review. Neural Comput. 17 (2005) 1223-1263
    • (2005) Neural Comput. , vol.17 , pp. 1223-1263
    • Jacobsson, H.1
  • 21
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang J.-S.R., and Sun C.-T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Networks 4 (1993) 156-159
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 156-159
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 23
    • 0033279878 scopus 로고    scopus 로고
    • On generating FC3 fuzzy rule systems from data using evolution strategies
    • Jin Y., Von Seelen W., and Sendhoff B. On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans. Systems Man Cybernet. 29 (1999) 829-845
    • (1999) IEEE Trans. Systems Man Cybernet. , vol.29 , pp. 829-845
    • Jin, Y.1    Von Seelen, W.2    Sendhoff, B.3
  • 24
    • 0003067817 scopus 로고
    • Representation of events in nerve nets and finite automata
    • Shannon C.E., and McCarthy J. (Eds), Princeton University Press, Prentice
    • Kleene S.C. Representation of events in nerve nets and finite automata. In: Shannon C.E., and McCarthy J. (Eds). Automata Studies vol. 34 (1956), Princeton University Press, Prentice 3-41
    • (1956) Automata Studies , vol.34 , pp. 3-41
    • Kleene, S.C.1
  • 25
    • 54549106470 scopus 로고    scopus 로고
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proc. 14th Internat. Joint Conf. on Artificial Intelligence (IJCAI), 1995, pp. 1137-1145.
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proc. 14th Internat. Joint Conf. on Artificial Intelligence (IJCAI), 1995, pp. 1137-1145.
  • 26
    • 0002046921 scopus 로고
    • Fool's gold: extracting finite state machines from recurrent network dynamics
    • Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufmann, Los Altos, CA
    • Kolen J.F. Fool's gold: extracting finite state machines from recurrent network dynamics. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Advances in Neural Information Processing Systems 6 (1994), Morgan Kaufmann, Los Altos, CA 501-508
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 501-508
    • Kolen, J.F.1
  • 27
    • 21844505069 scopus 로고
    • The observer's paradox: apparent computational complexity in physical systems
    • Kolen J.F., and Pollack J.B. The observer's paradox: apparent computational complexity in physical systems. J. Experiment. Theoret. Artificial Intelligence 7 (1995) 253-277
    • (1995) J. Experiment. Theoret. Artificial Intelligence , vol.7 , pp. 253-277
    • Kolen, J.F.1    Pollack, J.B.2
  • 28
    • 23044508082 scopus 로고    scopus 로고
    • Are artificial neural networks white boxes?
    • Kolman E., and Margaliot M. Are artificial neural networks white boxes?. IEEE Trans. Neural Networks 16 (2005) 844-852
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 844-852
    • Kolman, E.1    Margaliot, M.2
  • 29
    • 34248681042 scopus 로고    scopus 로고
    • Knowledge extraction from neural networks using the all-permutations fuzzy rule base: the LED display recognition problem
    • Kolman E., and Margaliot M. Knowledge extraction from neural networks using the all-permutations fuzzy rule base: the LED display recognition problem. IEEE Trans. Neural Networks 18 (2007) 925-931
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 925-931
    • Kolman, E.1    Margaliot, M.2
  • 30
    • 54549122236 scopus 로고    scopus 로고
    • E. Kolman, M. Margaliot, A new approach to knowledge-based design of recurrent neural networks, IEEE Trans. Neural Networks, to appear, Available: 〈www.eng.tau.ac.il/~michaelm〉 (Online).
    • E. Kolman, M. Margaliot, A new approach to knowledge-based design of recurrent neural networks, IEEE Trans. Neural Networks, to appear, Available: 〈www.eng.tau.ac.il/~michaelm〉 (Online).
  • 31
    • 54549100028 scopus 로고    scopus 로고
    • V. Kreinovich, C. Langrand, H. T. Nguyen, A statistical analysis for rule base reduction, in: Proc. Second Internat. Conf. on Intelligent Technologies (InTech'2001), Bangkok, Thailand, 2001, pp. 47-52.
    • V. Kreinovich, C. Langrand, H. T. Nguyen, A statistical analysis for rule base reduction, in: Proc. Second Internat. Conf. on Intelligent Technologies (InTech'2001), Bangkok, Thailand, 2001, pp. 47-52.
  • 32
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feedforward and recurrent neural networks
    • Kuan C.-M., and Liu T. Forecasting exchange rates using feedforward and recurrent neural networks. J. Appl. Econometrics 10 (1995) 347-364
    • (1995) J. Appl. Econometrics , vol.10 , pp. 347-364
    • Kuan, C.-M.1    Liu, T.2
  • 33
    • 0031095587 scopus 로고    scopus 로고
    • A new recurrent neural network architecture for visual pattern recognition
    • Lee S.-W., and Song H.-H. A new recurrent neural network architecture for visual pattern recognition. IEEE Trans. Neural Networks 8 (1997) 331-340
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 331-340
    • Lee, S.-W.1    Song, H.-H.2
  • 34
    • 0006311788 scopus 로고
    • First order recurrent neural networks and deterministic finite state automata
    • Manolios P., and Fanelly R. First order recurrent neural networks and deterministic finite state automata. Neural Comput. 6 (1994) 1155-1173
    • (1994) Neural Comput. , vol.6 , pp. 1155-1173
    • Manolios, P.1    Fanelly, R.2
  • 35
    • 33748438998 scopus 로고    scopus 로고
    • Extraction of similarity based fuzzy rules from artificial neural networks
    • Mantas C.J., Puche J.M., and Mantas J.M. Extraction of similarity based fuzzy rules from artificial neural networks. Internat J. Approx. Reason. 43 (2006) 202-221
    • (2006) Internat J. Approx. Reason. , vol.43 , pp. 202-221
    • Mantas, C.J.1    Puche, J.M.2    Mantas, J.M.3
  • 38
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch W.S., and Pitts W.H. A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 5 (1943) 115-137
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-137
    • McCulloch, W.S.1    Pitts, W.H.2
  • 39
    • 54549100025 scopus 로고    scopus 로고
    • L.R. Medsker, L.C. Jain, Recurrent Neural Networks: Design and Applications, CRC Press, Boca Raton, 1999.
    • L.R. Medsker, L.C. Jain, Recurrent Neural Networks: Design and Applications, CRC Press, Boca Raton, 1999.
  • 41
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Networks 11 (2000) 748-768
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 42
    • 0029184523 scopus 로고
    • Fuzzy multi-layer perceptron, inferencing and rule generation
    • Mitra S., and Pal S. Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans. Neural Networks 6 (1995) 51-63
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 51-63
    • Mitra, S.1    Pal, S.2
  • 43
    • 26944451283 scopus 로고    scopus 로고
    • Are fuzzy sets a reasonable tool for modeling vague phenomena?
    • Novak V. Are fuzzy sets a reasonable tool for modeling vague phenomena?. Fuzzy Sets and Systems 156 (2005) 341-348
    • (2005) Fuzzy Sets and Systems , vol.156 , pp. 341-348
    • Novak, V.1
  • 44
    • 0040708750 scopus 로고
    • Extraction and insertion of symbolic information in recurrent neural networks
    • Honavar V., and Uhr L. (Eds), Academic Press, New York
    • Omlin C.W., and Giles C.L. Extraction and insertion of symbolic information in recurrent neural networks. In: Honavar V., and Uhr L. (Eds). Artificial Intelligence and Neural Networks: Step toward Principled Integration (1994), Academic Press, New York 271-299
    • (1994) Artificial Intelligence and Neural Networks: Step toward Principled Integration , pp. 271-299
    • Omlin, C.W.1    Giles, C.L.2
  • 45
    • 0029880174 scopus 로고    scopus 로고
    • Extraction of rules from discrete-time recurrent neural networks
    • Omlin C.W., and Giles C.L. Extraction of rules from discrete-time recurrent neural networks. Neural Networks 9 (1996) 41-52
    • (1996) Neural Networks , vol.9 , pp. 41-52
    • Omlin, C.W.1    Giles, C.L.2
  • 46
    • 33750461732 scopus 로고    scopus 로고
    • Symbolic knowledge representation in recurrent neural networks: insights from theoretical models of computation
    • Cloete I., and Zurada J.M. (Eds), Kluwer, Dordrecht
    • Omlin C.W., and Giles C.L. Symbolic knowledge representation in recurrent neural networks: insights from theoretical models of computation. In: Cloete I., and Zurada J.M. (Eds). Knowledge-Based Neurocomputing (2000), Kluwer, Dordrecht 63-115
    • (2000) Knowledge-Based Neurocomputing , pp. 63-115
    • Omlin, C.W.1    Giles, C.L.2
  • 47
    • 0031996475 scopus 로고    scopus 로고
    • Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks
    • Omlin C.W., Thornber K.K., and Giles C.L. Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks. IEEE Trans. Fuzzy Systems 6 (1998) 76-89
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , pp. 76-89
    • Omlin, C.W.1    Thornber, K.K.2    Giles, C.L.3
  • 48
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • Pal S.K., and Mitra S. Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural Networks 3 (1992) 683-697
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 683-697
    • Pal, S.K.1    Mitra, S.2
  • 49
    • 0027695455 scopus 로고
    • Fuzzy-set based models of neurons and knowledge-based networks
    • Pedrycz W., and Rocha A.F. Fuzzy-set based models of neurons and knowledge-based networks. IEEE Trans. Fuzzy Systems 1 (1993) 254-266
    • (1993) IEEE Trans. Fuzzy Systems , vol.1 , pp. 254-266
    • Pedrycz, W.1    Rocha, A.F.2
  • 50
    • 0001592322 scopus 로고    scopus 로고
    • The use of recurrent networks in continuous speech recognition
    • Lee C.H., Soong F.K., and Paliwal K.K. (Eds), Kluwer Academic, Dordrecht
    • Robinson T., Hochberg M., and Renals S. The use of recurrent networks in continuous speech recognition. In: Lee C.H., Soong F.K., and Paliwal K.K. (Eds). Automatic Speech and Speaker Recognition: Advanced Topics (1996), Kluwer Academic, Dordrecht 233-258
    • (1996) Automatic Speech and Speaker Recognition: Advanced Topics , pp. 233-258
    • Robinson, T.1    Hochberg, M.2    Renals, S.3
  • 51
    • 0035462333 scopus 로고    scopus 로고
    • Simple recurrent networks learn context-free and context-sensitive languages by counting
    • Rodriguez P. Simple recurrent networks learn context-free and context-sensitive languages by counting. Neural Comput. 13 (2001) 2093-2118
    • (2001) Neural Comput. , vol.13 , pp. 2093-2118
    • Rodriguez, P.1
  • 52
    • 0033098329 scopus 로고    scopus 로고
    • A recurrent neural network that learns to count
    • Rodriguez P., Wiles J., and Elman J.L. A recurrent neural network that learns to count. Connection Sci. 11 (1999) 5-40
    • (1999) Connection Sci. , vol.11 , pp. 5-40
    • Rodriguez, P.1    Wiles, J.2    Elman, J.L.3
  • 53
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Development 3 (1959) 211-229
    • (1959) IBM J. Res. Development , vol.3 , pp. 211-229
    • Samuel, A.L.1
  • 54
    • 0033720971 scopus 로고    scopus 로고
    • S. Snyders, C.W. Omlin, What inductive bias gives good neural network training performance?, in: Proc. Internat. Joint Conf. on Neural Networks (IJCNN'00), Como, Italy, 2000, pp. 445-450.
    • S. Snyders, C.W. Omlin, What inductive bias gives good neural network training performance?, in: Proc. Internat. Joint Conf. on Neural Networks (IJCNN'00), Como, Italy, 2000, pp. 445-450.
  • 56
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle A.B., Andrews R., Golea M., and Diederich J. The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. Neural Networks 9 (1998) 1057-1068
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 57
    • 0033097317 scopus 로고    scopus 로고
    • Extracting finite-state representation from recurrent neural networks trained on chaotic symbolic sequences
    • Tiňo P., and Köteles M. Extracting finite-state representation from recurrent neural networks trained on chaotic symbolic sequences. Neural Comput. 10 (1999) 284-302
    • (1999) Neural Comput. , vol.10 , pp. 284-302
    • Tiňo, P.1    Köteles, M.2
  • 58
    • 0032320668 scopus 로고    scopus 로고
    • Extracting stochastic machines from recurrent neural networks trained on complex symbolic sequences
    • Tiňo P., and Vojtec V. Extracting stochastic machines from recurrent neural networks trained on complex symbolic sequences. Neural Network World 8 (1998) 517-530
    • (1998) Neural Network World , vol.8 , pp. 517-530
    • Tiňo, P.1    Vojtec, V.2
  • 59
    • 54549085256 scopus 로고    scopus 로고
    • M. Tomita, Dynamic construction of finite-state automata from examples using hill-climbing, in: Proc. Fourth Annual Conf. on Cognitive Science, 1982, pp. 105-108.
    • M. Tomita, Dynamic construction of finite-state automata from examples using hill-climbing, in: Proc. Fourth Annual Conf. on Cognitive Science, 1982, pp. 105-108.
  • 60
    • 54549084134 scopus 로고    scopus 로고
    • G. Towell, J. Shavlik, M. Noordewier, Refinement of approximate domain theories by knowledge based neural network, in: Proc. Eighth National Conf. on Artificial Intelligence, 1990, pp. 861-866.
    • G. Towell, J. Shavlik, M. Noordewier, Refinement of approximate domain theories by knowledge based neural network, in: Proc. Eighth National Conf. on Artificial Intelligence, 1990, pp. 861-866.
  • 61
    • 3242678956 scopus 로고    scopus 로고
    • Mathematical modeling of observed natural behavior: a fuzzy logic approach
    • Tron E., and Margaliot M. Mathematical modeling of observed natural behavior: a fuzzy logic approach. Fuzzy Sets and Systems 146 (2004) 437-450
    • (2004) Fuzzy Sets and Systems , vol.146 , pp. 437-450
    • Tron, E.1    Margaliot, M.2
  • 62
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous R.L., and Kuhn G.M. Induction of finite-state languages using second-order recurrent networks. Neural Comput. 4 (1992) 406-414
    • (1992) Neural Comput. , vol.4 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 63
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., and Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1 (1989) 270-280
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 65
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning
    • Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. 30 (1975) 199-249
    • (1975) Inform. Sci. , vol.30 , pp. 199-249
    • Zadeh, L.A.1
  • 66
    • 0030142764 scopus 로고    scopus 로고
    • Fuzzy logic=computing with words
    • Zadeh L.A. Fuzzy logic=computing with words. IEEE Trans. Fuzzy Systems 4 (1996) 103-111
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , pp. 103-111
    • Zadeh, L.A.1
  • 67
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Zeng Z., Goodman R.M., and Smyth P. Learning finite state machines with self-clustering recurrent networks. Neural Comput. 5 (1993) 976-990
    • (1993) Neural Comput. , vol.5 , pp. 976-990
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.