메뉴 건너뛰기




Volumn 25, Issue 9, 2008, Pages 850-865

Division algorithms for Bernstein polynomials

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; AMBER; BOOLEAN FUNCTIONS; POLYNOMIAL APPROXIMATION; SET THEORY;

EID: 54449093459     PISSN: 01678396     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cagd.2007.10.003     Document Type: Article
Times cited : (14)

References (20)
  • 1
    • 54449099132 scopus 로고    scopus 로고
    • Busé, L., Elkadi, M., Galligo, A., 2007. A computational study of ruled surfaces. J. Symbolic Comput. In press
    • Busé, L., Elkadi, M., Galligo, A., 2007. A computational study of ruled surfaces. J. Symbolic Comput. In press
  • 2
    • 0000396870 scopus 로고
    • Shape preserving representations and optimality of the Bernstein basis
    • Carnicer J.M., and Peña J.M. Shape preserving representations and optimality of the Bernstein basis. Adv. Comput. Math. 1 2 (1993) 173-196
    • (1993) Adv. Comput. Math. , vol.1 , Issue.2 , pp. 173-196
    • Carnicer, J.M.1    Peña, J.M.2
  • 3
    • 0037340389 scopus 로고    scopus 로고
    • Reparametrization of a rational ruled surface using the μ-basis
    • Chen F. Reparametrization of a rational ruled surface using the μ-basis. Comput. Aided Geom. Design 20 1 (2003) 11-17
    • (2003) Comput. Aided Geom. Design , vol.20 , Issue.1 , pp. 11-17
    • Chen, F.1
  • 4
    • 0036474110 scopus 로고    scopus 로고
    • A new implicit representation of a planar rational curve with high order singularity
    • Chen F., and Sederberg T. A new implicit representation of a planar rational curve with high order singularity. Comput. Aided Geom. Design 19 2 (2002) 151-167
    • (2002) Comput. Aided Geom. Design , vol.19 , Issue.2 , pp. 151-167
    • Chen, F.1    Sederberg, T.2
  • 5
    • 0012367274 scopus 로고    scopus 로고
    • The μ-basis of a planar rational curve-properties and computation
    • Chen F., and Wang W. The μ-basis of a planar rational curve-properties and computation. Graphical Models 64 6 (2002) 368-381
    • (2002) Graphical Models , vol.64 , Issue.6 , pp. 368-381
    • Chen, F.1    Wang, W.2
  • 6
    • 0242593248 scopus 로고    scopus 로고
    • Revisiting the μ-basis of a rational ruled surface
    • Chen F., and Wang W. Revisiting the μ-basis of a rational ruled surface. J. Symbolic Comput. 36 5 (2003) 699-716
    • (2003) J. Symbolic Comput. , vol.36 , Issue.5 , pp. 699-716
    • Chen, F.1    Wang, W.2
  • 8
    • 0003908675 scopus 로고    scopus 로고
    • Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
    • Springer-Verlag, New York
    • Cox D., Little J., and O'Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. second ed. (1997), Springer-Verlag, New York
    • (1997) Undergraduate Texts in Mathematics. second ed.
    • Cox, D.1    Little, J.2    O'Shea, D.3
  • 10
    • 0032167353 scopus 로고    scopus 로고
    • The moving line ideal basis of planar rational curves
    • Cox D.A., Sederberg T.W., and Chen F. The moving line ideal basis of planar rational curves. Comput. Aided Geom. Design 15 8 (1998) 803-827
    • (1998) Comput. Aided Geom. Design , vol.15 , Issue.8 , pp. 803-827
    • Cox, D.A.1    Sederberg, T.W.2    Chen, F.3
  • 11
    • 0023455805 scopus 로고
    • On the numerical condition of polynomials in Bernstein form
    • Farouki R.T., and Rajan V.T. On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Design 4 3 (1987) 191-216
    • (1987) Comput. Aided Geom. Design , vol.4 , Issue.3 , pp. 191-216
    • Farouki, R.T.1    Rajan, V.T.2
  • 13
    • 0000596483 scopus 로고
    • Ueber die Theorie der algebraischen Formen
    • Hilbert D. Ueber die Theorie der algebraischen Formen. Math. Ann. 36 4 (1890) 473-534
    • (1890) Math. Ann. , vol.36 , Issue.4 , pp. 473-534
    • Hilbert, D.1
  • 14
    • 0033461599 scopus 로고    scopus 로고
    • On syzygy modules for polynomial matrices
    • Lin Z. On syzygy modules for polynomial matrices. Linear Algebra Appl. 289 1-3 (1999) 73-86
    • (1999) Linear Algebra Appl. , vol.289 , Issue.1-3 , pp. 73-86
    • Lin, Z.1
  • 15
    • 0029202235 scopus 로고    scopus 로고
    • Sederberg, T.W., Chen, F., 1995. Implicitization using moving curves and surfaces. In: SIGGRAPH'95, Computer Graphics, Annual Conference Series, pp. 301-308
    • Sederberg, T.W., Chen, F., 1995. Implicitization using moving curves and surfaces. In: SIGGRAPH'95, Computer Graphics, Annual Conference Series, pp. 301-308
  • 16
    • 0031072950 scopus 로고    scopus 로고
    • Implicitizing rational curves by the method of moving algebraic curves
    • Sederberg T.W., Goldman R., and Du H. Implicitizing rational curves by the method of moving algebraic curves. J. Symbolic Comput. 23 2-3 (1997) 153-175
    • (1997) J. Symbolic Comput. , vol.23 , Issue.2-3 , pp. 153-175
    • Sederberg, T.W.1    Goldman, R.2    Du, H.3
  • 18
    • 58549106196 scopus 로고    scopus 로고
    • Song, N., Goldman, R., 2007. μ-bases for polynomial systems in one variable. Comput. Aided Geom. Design. doi:10.1016/j.cagd.2008.04.001
    • Song, N., Goldman, R., 2007. μ-bases for polynomial systems in one variable. Comput. Aided Geom. Design. doi:10.1016/j.cagd.2008.04.001
  • 19
    • 34247121886 scopus 로고    scopus 로고
    • Axial moving lines and singularities of rational planar curves
    • Song N., Chen F., and Goldman R. Axial moving lines and singularities of rational planar curves. Comput. Aided Geom. Design. 24 4 (2007) 200-209
    • (2007) Comput. Aided Geom. Design. , vol.24 , Issue.4 , pp. 200-209
    • Song, N.1    Chen, F.2    Goldman, R.3
  • 20
    • 0008675801 scopus 로고    scopus 로고
    • A direct approach to computing the μ-basis of planar rational curves
    • Zheng J., and Sederberg T.W. A direct approach to computing the μ-basis of planar rational curves. J. Symbolic Comput. 31 5 (2001) 619-629
    • (2001) J. Symbolic Comput. , vol.31 , Issue.5 , pp. 619-629
    • Zheng, J.1    Sederberg, T.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.