메뉴 건너뛰기




Volumn 39, Issue 11-12, 2004, Pages 1195-1201

Positive solutions for a beam equation on a nonlinear elastic foundation

Author keywords

Elastic beam; Maximum principle; Positive solutions

Indexed keywords


EID: 5444251241     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2004.06.001     Document Type: Article
Times cited : (49)

References (18)
  • 1
    • 4944235284 scopus 로고    scopus 로고
    • Iterative solutions for a beam equation with nonlinear boundary conditions of third order
    • (to appear).
    • T.F. Ma and J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Appl. Math. Comput. (to appear).
    • Appl. Math. Comput.
    • Ma, T.F.1    Da Silva, J.2
  • 3
    • 0001066736 scopus 로고
    • Symmetric equilibria for a beam with a nonlinear elastic foundation
    • M.R. Grossinho, and T.F. Ma Symmetric equilibria for a beam with a nonlinear elastic foundation Portugal. Math. 51 1994 375 393
    • (1994) Portugal. Math. , vol.51 , pp. 375-393
    • Grossinho, M.R.1    Ma, T.F.2
  • 4
    • 0034230641 scopus 로고    scopus 로고
    • The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation
    • M.R. Grossinho, and St.A. Tersian The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation Nonlinear Anal. 41 2000 417 431
    • (2000) Nonlinear Anal. , vol.41 , pp. 417-431
    • Grossinho, M.R.1    Tersian, St.A.2
  • 5
    • 0036469304 scopus 로고    scopus 로고
    • A fixed point operator for a nonlinear boundary value problem
    • P. Amster, and M.C. Mariani A fixed point operator for a nonlinear boundary value problem J. Math. Anal. Appl. 266 2001 160 168
    • (2001) J. Math. Anal. Appl. , vol.266 , pp. 160-168
    • Amster, P.1    Mariani, M.C.2
  • 6
    • 0000775199 scopus 로고
    • Non-zero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: Slow oscillations of beams on elastic bearings
    • E. Feireisl Non-zero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: Slow oscillations of beams on elastic bearings Ann. Scuola Norm. Sup. Pisa XX 1993 133 146
    • (1993) Ann. Scuola Norm. Sup. Pisa , vol.20 , pp. 133-146
    • Feireisl, E.1
  • 7
    • 0033128096 scopus 로고    scopus 로고
    • Free vibrations of beams on bearings with nonlinear elastic responses
    • M. Fečkan Free vibrations of beams on bearings with nonlinear elastic responses J. Differential Equations 154 1999 55 72
    • (1999) J. Differential Equations , vol.154 , pp. 55-72
    • Fečkan, M.1
  • 8
    • 0035946905 scopus 로고    scopus 로고
    • Boundary stabilization for a non-linear beam on elastic bearings
    • T.F. Ma Boundary stabilization for a non-linear beam on elastic bearings Math. Methods Appl. Sci. 24 2001 583 594
    • (2001) Math. Methods Appl. Sci. , vol.24 , pp. 583-594
    • Ma, T.F.1
  • 10
    • 0037098593 scopus 로고    scopus 로고
    • On positive solutions of some nonlinear fourth-order beam equations
    • Z. Bai, and H. Wang On positive solutions of some nonlinear fourth-order beam equations J. Math. Anal. Appl. 270 2002 357 368
    • (2002) J. Math. Anal. Appl. , vol.270 , pp. 357-368
    • Bai, Z.1    Wang, H.2
  • 11
    • 0000562237 scopus 로고
    • Upper and lower solutions Ambrosetti-Prodi problem and positive solutions for fourth order O. D. E.
    • C. De Coster, and L. Sanchez Upper and lower solutions Ambrosetti-Prodi problem and positive solutions for fourth order O. D. E. Riv. Mat. Pura Appl. 14 1994 57 82
    • (1994) Riv. Mat. Pura Appl. , vol.14 , pp. 57-82
    • De Coster, C.1    Sanchez, L.2
  • 12
    • 84963428231 scopus 로고
    • A maximum principle for fourth order ordinary differential equations
    • P. Korman A maximum principle for fourth order ordinary differential equations Appl. Anal. 33 1989 267 273
    • (1989) Appl. Anal. , vol.33 , pp. 267-273
    • Korman, P.1
  • 13
    • 0031276985 scopus 로고    scopus 로고
    • The method of lower and upper solutions for fourth-order two-point boundary value problems
    • R. Ma, J. Zhang, and S. Fu The method of lower and upper solutions for fourth-order two-point boundary value problems J. Math. Anal. Appl. 215 1997 415 422
    • (1997) J. Math. Anal. Appl. , vol.215 , pp. 415-422
    • Ma, R.1    Zhang, J.2    Fu, S.3
  • 14
    • 0141890062 scopus 로고    scopus 로고
    • Existence results and numerical solutions for a beam equation with nonlinear boundary conditions
    • T.F. Ma Existence results and numerical solutions for a beam equation with nonlinear boundary conditions Appl. Numer. Math. 47 2003 189 196
    • (2003) Appl. Numer. Math. , vol.47 , pp. 189-196
    • Ma, T.F.1
  • 15
    • 0007228554 scopus 로고
    • Boundary value problems for some fourth order ordinary differential equations
    • L. Sanchez Boundary value problems for some fourth order ordinary differential equations Appl. Anal. 38 1990 161 177
    • (1990) Appl. Anal. , vol.38 , pp. 161-177
    • Sanchez, L.1
  • 16
    • 34548350707 scopus 로고
    • Dual variational methods in critical point theory and applications
    • A. Ambrosetti, and P. Rabinowitz Dual variational methods in critical point theory and applications J. Funct. Anal. 14 1973 349 381
    • (1973) J. Funct. Anal. , vol.14 , pp. 349-381
    • Ambrosetti, A.1    Rabinowitz, P.2
  • 17
    • 0016092731 scopus 로고
    • On the variational principle
    • I. Ekeland On the variational principle J. Math. Anal. Appl. 47 1974 324 353
    • (1974) J. Math. Anal. Appl. , vol.47 , pp. 324-353
    • Ekeland, I.1
  • 18
    • 0000049245 scopus 로고
    • Combined effects of concave and convex nonlinearities in some elliptic problems
    • A. Ambrosetti, H. Brézis, and G. Cerami Combined effects of concave and convex nonlinearities in some elliptic problems J. Funct. Anal. 122 1994 519 543
    • (1994) J. Funct. Anal. , vol.122 , pp. 519-543
    • Ambrosetti, A.1    Brézis, H.2    Cerami, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.