-
1
-
-
34547842101
-
-
For recent reviews, see a
-
For recent reviews, see a) L. Dunsch, S. Yang, Small 2007, 3, 1298-1320;
-
(2007)
Small
, vol.3
, pp. 1298-1320
-
-
Dunsch, L.1
Yang, S.2
-
3
-
-
33845969543
-
-
S. F. Yang, S. Troyanov, A. Popov, M. Krause, L. Dunsch, J. Am. Chem. Soc. 2006, 128, 16733-16739.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 16733-16739
-
-
Yang, S.F.1
Troyanov, S.2
Popov, A.3
Krause, M.4
Dunsch, L.5
-
5
-
-
45549087278
-
-
S. F. Yang, A. Popov, M. Kalbac, L. Dunsch, Chem. Eur. J. 2008, 14, 2084-2092.
-
(2008)
Chem. Eur. J
, vol.14
, pp. 2084-2092
-
-
Yang, S.F.1
Popov, A.2
Kalbac, M.3
Dunsch, L.4
-
6
-
-
0034707023
-
-
S. Stevenson, P. W. Fowler, T. Heine, J. C. Duchamp, G. Rice, T. Glass, K. Harich, E. Hajdu, R. Bible, H. C. Dorn, Nature 2000, 408, 427-428.
-
(2000)
Nature
, vol.408
, pp. 427-428
-
-
Stevenson, S.1
Fowler, P.W.2
Heine, T.3
Duchamp, J.C.4
Rice, G.5
Glass, T.6
Harich, K.7
Hajdu, E.8
Bible, R.9
Dorn, H.C.10
-
7
-
-
0034645603
-
-
a) M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, H. C. Dorn, A. L. Balch, J. Am. Chem. Soc. 2000, 122, 12220-12226;
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 12220-12226
-
-
Olmstead, M.M.1
de Bettencourt-Dias, A.2
Duchamp, J.C.3
Stevenson, S.4
Dorn, H.C.5
Balch, A.L.6
-
8
-
-
0001700708
-
-
b) R. M. Macfarlane, D. S. Bethune, S. Stevenson, H. C. Dorn, Chem. Phys. Lett. 2001, 343, 229-234;
-
(2001)
Chem. Phys. Lett
, vol.343
, pp. 229-234
-
-
Macfarlane, R.M.1
Bethune, D.S.2
Stevenson, S.3
Dorn, H.C.4
-
9
-
-
0036473470
-
-
c) I. N. Ioffe, A. S. Ievlev, O. V. Boltalina, L. N. Sidorov, H. C. Dorn, S. Stevenson, G. Rice, Int. J. Mass Spectrom. 2002, 213, 183-189.
-
(2002)
Int. J. Mass Spectrom
, vol.213
, pp. 183-189
-
-
Ioffe, I.N.1
Ievlev, A.S.2
Boltalina, O.V.3
Sidorov, L.N.4
Dorn, H.C.5
Stevenson, S.6
Rice, G.7
-
10
-
-
0346742515
-
-
a) E. B. Iezzi, J. C. Duchamp, K. R. Fletcher, T. E. Glass, H. C. Dorn, Nano Lett. 2002, 2, 1187-1190;
-
(2002)
Nano Lett
, vol.2
, pp. 1187-1190
-
-
Iezzi, E.B.1
Duchamp, J.C.2
Fletcher, K.R.3
Glass, T.E.4
Dorn, H.C.5
-
11
-
-
0037020299
-
-
b) S. Stevenson, H. M. Lee, M. M. Olmstead, C. Kozikowski, P. Stevenson, A. L. Balch, Chem. Eur. J. 2002, 8, 4528-4535.
-
(2002)
Chem. Eur. J
, vol.8
, pp. 4528-4535
-
-
Stevenson, S.1
Lee, H.M.2
Olmstead, M.M.3
Kozikowski, C.4
Stevenson, P.5
Balch, A.L.6
-
12
-
-
33746003967
-
-
X. L. Wang, T. M. Zuo, M. M. Olmstead, J. C. Duchamp, T. E. Glass, F. Cromer, A. L. Balch, H. C. Dorn, J. Am. Chem. Soc. 2006, 128, 8884-8889.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 8884-8889
-
-
Wang, X.L.1
Zuo, T.M.2
Olmstead, M.M.3
Duchamp, J.C.4
Glass, T.E.5
Cromer, F.6
Balch, A.L.7
Dorn, H.C.8
-
13
-
-
33746336282
-
-
N. Chen, E. Y. Zhang, C. R. Wang, J. Phys. Chem. B 2006, 110, 13322-13325.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 13322-13325
-
-
Chen, N.1
Zhang, E.Y.2
Wang, C.R.3
-
14
-
-
34548251930
-
-
N. Chen, L. Z. Fan, K. Tan, Y.Q Wu, C. Y. Shu, X. Lu, C. R. Wang, J. Phys. Chem. C 2007, 111, 11823-11828.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 11823-11828
-
-
Chen, N.1
Fan, L.Z.2
Tan, K.3
Wu, Y.Q.4
Shu, C.Y.5
Lu, X.6
Wang, C.R.7
-
15
-
-
34249323341
-
-
N. Chen, E. Zhang, K. Tan, C. R. Wang, X. Lu, Org. Lett. 2007, 9, 2011-2013.
-
(2007)
Org. Lett
, vol.9
, pp. 2011-2013
-
-
Chen, N.1
Zhang, E.2
Tan, K.3
Wang, C.R.4
Lu, X.5
-
16
-
-
33748951397
-
-
S. F. Yang, M. Kalbac, A. Popov, L. Dunsch, ChemPhysChem 2006, 7, 1990-1995.
-
(2006)
ChemPhysChem
, vol.7
, pp. 1990-1995
-
-
Yang, S.F.1
Kalbac, M.2
Popov, A.3
Dunsch, L.4
-
17
-
-
34948851396
-
-
S. F. Yang, A. Popov, L. Dunsch, J. Phys. Chem. B 2007, 111, 13659-13663.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 13659-13663
-
-
Yang, S.F.1
Popov, A.2
Dunsch, L.3
-
19
-
-
41849091146
-
-
S. Stevenson, C. J. Chancellor, H. M. Lee, M. M. , A. L. Balch, Inorg. Chem. 2008, 47, 1420-1427.
-
S. Stevenson, C. J. Chancellor, H. M. Lee, M. M. , A. L. Balch, Inorg. Chem. 2008, 47, 1420-1427.
-
-
-
-
20
-
-
54249134064
-
-
80 (x = 0-2; A = Gd, Ho) was detected by mass spectrometric measurements, but the corresponding MMNCFs have not been isolated.
-
80 (x = 0-2; A = Gd, Ho) was detected by mass spectrometric measurements, but the corresponding MMNCFs have not been isolated.
-
-
-
-
22
-
-
0942289611
-
-
L. Dunsch, M. Krause. J. Noack, P. Georgi, J. Phys. Chem. Solids 2004, 65, 309-315.
-
(2004)
J. Phys. Chem. Solids
, vol.65
, pp. 309-315
-
-
Dunsch, L.1
Krause, M.2
Noack, J.3
Georgi, P.4
-
23
-
-
54249140693
-
-
For M3N@C80, the large vibrational density of states generally results in the mixing of the anti-symmetric M-N stretching mode of the cluster with the cage modes of the same symmetry. As a result, the M-N vibrational mode within M3N@C80 is generally split between several vibrations in the range of up to 30 cm-1 with contributions of 20-40%for each vibration. Each vibration of M3N@C80 with a higher M-N contribution has a rather higher intensity, and therefore several bands are usually detected in the range of the anti-symmetric M-N stretching mode. This kind of mixing is not caused by specific cluster-cage interactions but results solely from the coincidence of the vibrational frequencies of the cluster and the cage, and hence it may be different for different M3N@C80 (depending on which particular cage modes coincide with the frequency of a given cluster, b) The coincidence of νL
-
80 is accidental.
-
-
-
-
24
-
-
0001441188
-
-
T. Heine, M. Buhl, P. W. Fowler, G. Seifert, Chem. Phys. Lett. 2000, 316, 373-380.
-
(2000)
Chem. Phys. Lett
, vol.316
, pp. 373-380
-
-
Heine, T.1
Buhl, M.2
Fowler, P.W.3
Seifert, G.4
-
26
-
-
54249111601
-
-
80 and were then averaged for THJs (20 atoms) and PHHJs (60 atoms).
-
80 and were then averaged for THJs (20 atoms) and PHHJs (60 atoms).
-
-
-
-
27
-
-
33845384911
-
-
N. B. Shustova, I. V. Kuvychko, R. D. Bolskar, K. Seppelt, S. H. Strauss, A. A. Popov, O. V. Boltalina, J. Am. Chem. Soc. 2006, 128, 15793-15798.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 15793-15798
-
-
Shustova, N.B.1
Kuvychko, I.V.2
Bolskar, R.D.3
Seppelt, K.4
Strauss, S.H.5
Popov, A.A.6
Boltalina, O.V.7
-
28
-
-
54249146636
-
-
Note that there are several conformers for each clusterfullerene with different orientation of the cluster inside. The lowest energy structures have C3 and Cs symmetries, and the relative stability of the C3-symmetric structure with respect to Cs configuration increases with increasing cluster size in the order Sc3N(4.6 kJmol-1)-Lu3N(5.0 kJ mol -1)-Y3N8.8 kJmol-1, Similarly, several structures can be obtained for the mixed clusters by replacing one or two metal atoms in either C3 or Cs conformers and, likewise, it is found that the lowest energy structures are always based on C3-derived isomers. With this respect, analysis given in this work is based on C3-derived structures
-
3-derived structures.
-
-
-
|