-
2
-
-
27744516763
-
Statistics of intuitionnistic versus classical logic
-
Kostrzycka, Z., Zaionc, M.: Statistics of intuitionnistic versus classical logic. Studia Logica 76(3), 307-328 (2004)
-
(2004)
Studia Logica
, vol.76
, Issue.3
, pp. 307-328
-
-
Kostrzycka, Z.1
Zaionc, M.2
-
4
-
-
38049089487
-
-
CSL, pp
-
Fournier, H., Gardy, D., Genitrini, A., Zaionc, M.: Classical and intuitionistic logic are asymptotically identical. In: CSL, pp. 177-193 (2007)
-
(2007)
Classical and intuitionistic logic are asymptotically identical
, pp. 177-193
-
-
Fournier, H.1
Gardy, D.2
Genitrini, A.3
Zaionc, M.4
-
5
-
-
0013482960
-
A natural prior probability distribution derived from the propositional calculus
-
Paris, J.B., Vencovská, A., Wilmers, G.M.: A natural prior probability distribution derived from the propositional calculus. Annals of Pure and Applied Logic 70, 243-285 (1994)
-
(1994)
Annals of Pure and Applied Logic
, vol.70
, pp. 243-285
-
-
Paris, J.B.1
Vencovská, A.2
Wilmers, G.M.3
-
6
-
-
0031504609
-
Some typical properties of large And/Or Boolean formulas
-
Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Structures and Algorithms 10, 337-351 (1997)
-
(1997)
Random Structures and Algorithms
, vol.10
, pp. 337-351
-
-
Lefmann, H.1
Savický, P.2
-
7
-
-
0031475943
-
Coloring rules for finite trees, and probabilities of monadic second order sentences
-
Woods, A.R.: Coloring rules for finite trees, and probabilities of monadic second order sentences. Random Struct. Algorithms 10(4), 453-485 (1997)
-
(1997)
Random Struct. Algorithms
, vol.10
, Issue.4
, pp. 453-485
-
-
Woods, A.R.1
-
8
-
-
6344221411
-
And/Or trees revisited
-
Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Combinatorics, Probability and Computing 13(4-5), 475-497 (2004)
-
(2004)
Combinatorics, Probability and Computing
, vol.13
, Issue.4-5
, pp. 475-497
-
-
Chauvin, B.1
Flajolet, P.2
Gardy, D.3
Gittenberger, B.4
-
9
-
-
18944361985
-
Statistical properties of simple types
-
Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types. Mathematical Structures in Computer Science 10(5), 575-594 (2000)
-
(2000)
Mathematical Structures in Computer Science
, vol.10
, Issue.5
, pp. 575-594
-
-
Moczurad, M.1
Tyszkiewicz, J.2
Zaionc, M.3
-
10
-
-
54249107278
-
On the density of truth of implicational parts of intuitionistic and classical logics
-
Kostrzycka, Z.: On the density of truth of implicational parts of intuitionistic and classical logics. J. of Applied Non-Classical Logics 13(2) (2003)
-
(2003)
J. of Applied Non-Classical Logics
, vol.13
, Issue.2
-
-
Kostrzycka, Z.1
-
11
-
-
33947434846
-
On the asymptotic density of tautologies in logic of implication and negation
-
39, 67-87
-
Zaionc, M.: On the asymptotic density of tautologies in logic of implication and negation. Reports on Mathematical Logic 39, 67-87 (2005)
-
(2005)
Reports on Mathematical Logic
-
-
Zaionc, M.1
-
15
-
-
54249115902
-
On the probability of absolute truth for and/or formulas
-
Woods, A.: On the probability of absolute truth for and/or formulas. Bulletin of Symbolic Logic 12(3) (2005)
-
(2005)
Bulletin of Symbolic Logic
, vol.12
, Issue.3
-
-
Woods, A.1
-
16
-
-
54249104129
-
-
Kozi C., J.: Subcritical pattern languages for and/or trees. Technical report (2008)
-
Kozi C., J.: Subcritical pattern languages for and/or trees. Technical report (2008)
-
-
-
-
17
-
-
0000378392
-
Short monotone formulae for the majority function
-
Valiant, L.: Short monotone formulae for the majority function. Journal of Algorithms 5, 363-366 (1984)
-
(1984)
Journal of Algorithms
, vol.5
, pp. 363-366
-
-
Valiant, L.1
-
19
-
-
0039648384
-
Using amplification to compute majority with small majority gates
-
Gupta, A., Mahajan, S.: Using amplification to compute majority with small majority gates. Comput. Complex. 6(1), 46-63 (1997)
-
(1997)
Comput. Complex
, vol.6
, Issue.1
, pp. 46-63
-
-
Gupta, A.1
Mahajan, S.2
-
20
-
-
38249017267
-
Random Boolean formulas representing any Boolean function with asymptotically equal probability
-
Savicky, P.: Random Boolean formulas representing any Boolean function with asymptotically equal probability. Discrete Mathematics 83, 95-103 (1990)
-
(1990)
Discrete Mathematics
, vol.83
, pp. 95-103
-
-
Savicky, P.1
-
21
-
-
30544447454
-
The boolean functions computed by random boolean formulas or how to grow the right function
-
Brodsky, A., Pippenger, N.: The boolean functions computed by random boolean formulas or how to grow the right function. Random Structures and Algorithms 27, 490-519 (2005)
-
(2005)
Random Structures and Algorithms
, vol.27
, pp. 490-519
-
-
Brodsky, A.1
Pippenger, N.2
-
22
-
-
0031538789
-
Systems of functional equations
-
Drmota, M.: Systems of functional equations. Random Structures and Algorithms 10(1-2), 103-124 (1997)
-
(1997)
Random Structures and Algorithms
, vol.10
, Issue.1-2
, pp. 103-124
-
-
Drmota, M.1
-
23
-
-
0005233026
-
Finite range random walk on free groups and homogeneous trees
-
Lalley, S.P.: Finite range random walk on free groups and homogeneous trees. The Annals of Probability 21 (1993)
-
(1993)
The Annals of Probability
, vol.21
-
-
Lalley, S.P.1
-
24
-
-
0442301347
-
Analytic combinatorics: Functional equations, rational and algebraic functions
-
Technical Report 4103, INR. IA January
-
Flajolet, P., Sedgewick, R.: Analytic combinatorics: Functional equations, rational and algebraic functions. Technical Report 4103, INR. IA (January 2001)
-
(2001)
-
-
Flajolet, P.1
Sedgewick, R.2
-
25
-
-
84925121989
-
-
Cambridge University Press, Cambridge to appear, Available from the authors' web page
-
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (to appear, 2008) Available from the authors' web page
-
(2008)
Analytic Combinatorics
-
-
Flajolet, P.1
Sedgewick, R.2
-
26
-
-
54249152819
-
-
Pivoteau, C., Salvy, B., Soria, M.: Combinatorial Newton iteration to compute Boltzmann oracle. Technical report, Journées ALÉA (March 2008), http: //www-calf or. Iip6. f r/pivoteau
-
Pivoteau, C., Salvy, B., Soria, M.: Combinatorial Newton iteration to compute Boltzmann oracle. Technical report, Journées ALÉA (March 2008), http: //www-calf or. Iip6. f r/pivoteau
-
-
-
|