메뉴 건너뛰기




Volumn , Issue , 2005, Pages 307-314

From learning metrics towards dependency exploration

Author keywords

Associative clustering; Data fusion; Dependent components; Discriminative clustering; Learning metrics

Indexed keywords

ASSOCIATIVE CLUSTERING; CANONICAL CORRELATIONS; DATA FUSION TECHNIQUE; DEPENDENT COMPONENTS; DISCRIMINATIVE CLUSTERING; DISTANCE METRICS; LEARNING METRICS; STATISTICAL DATAS;

EID: 54249101987     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (19)
  • 1
    • 0026586030 scopus 로고
    • Self-organizing neural network that discovers surfaces in random-dot stereograms
    • S. Becker and G. E. Hinton. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355: 161-163, 1992.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 2
    • 0002469309 scopus 로고    scopus 로고
    • Mutual information maximization: Models of cortical self-organization
    • Suzanna Becker. Mutual information maximization: models of cortical self-organization. Network: Computation in Neural Systems, 7: 7-31, 1996.
    • (1996) Network: Computation in Neural Systems , vol.7 , pp. 7-31
    • Becker, S.1
  • 4
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28: 321-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 8
  • 9
    • 0035392549 scopus 로고    scopus 로고
    • Bankruptcy analysis with self-organizing maps in learning metrics
    • Samuel Kaski, Janne Sinkkonen, and Jaakko Peltonen. Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Transactions on Neural Networks, 12: 936-947, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 936-947
    • Kaski, S.1    Sinkkonen, J.2    Peltonen, J.3
  • 13
    • 9144260753 scopus 로고    scopus 로고
    • Improved learning of riemannian metrics for exploratory analysis
    • Invited paper
    • Jaakko Peltonen, Arto Klami, and Samuel Kaski. Improved learning of Riemannian metrics for exploratory analysis. Neural Networks, 17: 1087-1100, 2004. Invited paper.
    • (2004) Neural Networks , vol.17 , pp. 1087-1100
    • Peltonen, J.1    Klami, A.2    Kaski, S.3
  • 15
    • 0036133934 scopus 로고    scopus 로고
    • Clustering based on conditional distributions in an auxiliary space
    • Janne Sinkkonen and Samuel Kaski. Clustering based on conditional distributions in an auxiliary space. Neural Computation, 14: 217-239, 2002.
    • (2002) Neural Computation , vol.14 , pp. 217-239
    • Sinkkonen, J.1    Kaski, S.2
  • 16
    • 84945247175 scopus 로고    scopus 로고
    • Discriminative clustering: Optimal contingency tables by learning metrics
    • T. Elomaa, H. Mannila, and H. Toivonen, editors Springer, Berlin
    • Janne Sinkkonen, Samuel Kaski, and Janne Nikkilä. Discriminative clustering: Optimal contingency tables by learning metrics. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proceedings of the ECML'02, 13th European Conference on Machine Learning, pages 418-430. Springer, Berlin, 2002.
    • (2002) Proceedings of the ECML'02, 13th European Conference on Machine Learning , pp. 418-430
    • Sinkkonen, J.1    Kaski, S.2    Nikkilä, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.