메뉴 건너뛰기




Volumn 384, Issue 1, 2008, Pages 120-136

A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase from Rhizobium leguminosarum

Author keywords

alkaline phosphatase superfamily; double displacement mechanism; formylglycine; phosphodiesterase; phosphonate monoester hydrolase

Indexed keywords

ALKALINE PHOSPHATASE; ARYLSULFATASE; CYSTEINE; FORMYLGLYCINE; GLYCINE DERIVATIVE; ORGANOPHOSPHATE; PHOSPHODIESTERASE; PHOSPHONATE MONOESTER HYDROLASE; SERINE; UNCLASSIFIED DRUG;

EID: 54249084848     PISSN: 00222836     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmb.2008.08.072     Document Type: Article
Times cited : (58)

References (68)
  • 1
    • 0032461412 scopus 로고    scopus 로고
    • A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases
    • Galperin M.Y., Bairoch A., and Koonin E.V. A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci. 7 (1998) 1829-1835
    • (1998) Protein Sci. , vol.7 , pp. 1829-1835
    • Galperin, M.Y.1    Bairoch, A.2    Koonin, E.V.3
  • 2
    • 27744446917 scopus 로고    scopus 로고
    • A new domain family in the superfamily of alkaline phosphatases
    • Bhadra R., Srinivasan N., and Pandit S.B. A new domain family in the superfamily of alkaline phosphatases. In Silico Biol. 5 (2005) 379-387
    • (2005) In Silico Biol. , vol.5 , pp. 379-387
    • Bhadra, R.1    Srinivasan, N.2    Pandit, S.B.3
  • 3
    • 0035576329 scopus 로고    scopus 로고
    • Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes
    • Galperin M.Y., and Jedrzejas M.J. Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins 45 (2001) 318-324
    • (2001) Proteins , vol.45 , pp. 318-324
    • Galperin, M.Y.1    Jedrzejas, M.J.2
  • 4
    • 0035847049 scopus 로고    scopus 로고
    • Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases
    • Gijsbers R., Ceulemans H., Stalmans W., and Bollen M. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J. Biol. Chem. 276 (2001) 1361-1368
    • (2001) J. Biol. Chem. , vol.276 , pp. 1361-1368
    • Gijsbers, R.1    Ceulemans, H.2    Stalmans, W.3    Bollen, M.4
  • 6
    • 33747517236 scopus 로고    scopus 로고
    • Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution
    • Zalatan J.G., Fenn T.D., Brunger A.T., and Herschlag D. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Biochemistry 45 (2006) 9788-9803
    • (2006) Biochemistry , vol.45 , pp. 9788-9803
    • Zalatan, J.G.1    Fenn, T.D.2    Brunger, A.T.3    Herschlag, D.4
  • 7
    • 0034599751 scopus 로고    scopus 로고
    • Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus
    • Jedrzejas M.J., Chander M., Setlow P., and Krishnasamy G. Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus. EMBO J. 19 (2000) 1419-1431
    • (2000) EMBO J. , vol.19 , pp. 1419-1431
    • Jedrzejas, M.J.1    Chander, M.2    Setlow, P.3    Krishnasamy, G.4
  • 8
    • 0032539976 scopus 로고    scopus 로고
    • Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis
    • Lukatela G., Krauss N., Theis K., Selmer T., Gieselmann V., von Figura K., and Saenger W. Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 37 (1998) 3654-3664
    • (1998) Biochemistry , vol.37 , pp. 3654-3664
    • Lukatela, G.1    Krauss, N.2    Theis, K.3    Selmer, T.4    Gieselmann, V.5    von Figura, K.6    Saenger, W.7
  • 9
    • 0034987576 scopus 로고    scopus 로고
    • 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family
    • Boltes I., Czapinska H., Kahnert A., von Bulow R., Dierks T., Schmidt B., et al. 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. Structure (London) 9 (2001) 483-491
    • (2001) Structure (London) , vol.9 , pp. 483-491
    • Boltes, I.1    Czapinska, H.2    Kahnert, A.3    von Bulow, R.4    Dierks, T.5    Schmidt, B.6
  • 12
    • 0025777694 scopus 로고
    • Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis
    • Kim E.E., and Wyckoff H.W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218 (1991) 449-464
    • (1991) J. Mol. Biol. , vol.218 , pp. 449-464
    • Kim, E.E.1    Wyckoff, H.W.2
  • 13
    • 0032760684 scopus 로고    scopus 로고
    • The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis
    • Holtz K.M., and Kantrowitz E.R. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett. 462 (1999) 7-11
    • (1999) FEBS Lett. , vol.462 , pp. 7-11
    • Holtz, K.M.1    Kantrowitz, E.R.2
  • 14
    • 0032513051 scopus 로고    scopus 로고
    • Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine
    • Recksiek M., Selmer T., Dierks T., Schmidt B., and von Figura K. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J. Biol. Chem. 273 (1998) 6096-6103
    • (1998) J. Biol. Chem. , vol.273 , pp. 6096-6103
    • Recksiek, M.1    Selmer, T.2    Dierks, T.3    Schmidt, B.4    von Figura, K.5
  • 15
    • 8844275956 scopus 로고    scopus 로고
    • Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility
    • Hanson S.R., Best M.D., and Wong C.H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem. Int. Ed. Engl. 43 (2004) 5736-5763
    • (2004) Angew Chem. Int. Ed. Engl. , vol.43 , pp. 5736-5763
    • Hanson, S.R.1    Best, M.D.2    Wong, C.H.3
  • 16
    • 0029130352 scopus 로고
    • A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency
    • Schmidt B., Selmer T., Ingendoh A., and von Figura K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82 (1995) 271-278
    • (1995) Cell , vol.82 , pp. 271-278
    • Schmidt, B.1    Selmer, T.2    Ingendoh, A.3    von Figura, K.4
  • 17
    • 0032475864 scopus 로고    scopus 로고
    • Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine
    • Dierks T., Miech C., Hummerjohann J., Schmidt B., Kertesz M.A., and von Figura K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560-25564
    • (1998) J. Biol. Chem. , vol.273 , pp. 25560-25564
    • Dierks, T.1    Miech, C.2    Hummerjohann, J.3    Schmidt, B.4    Kertesz, M.A.5    von Figura, K.6
  • 18
    • 0032570561 scopus 로고    scopus 로고
    • Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine
    • Miech C., Dierks T., Selmer T., von Figura K., and Schmidt B. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J. Biol. Chem. 273 (1998) 4835-4837
    • (1998) J. Biol. Chem. , vol.273 , pp. 4835-4837
    • Miech, C.1    Dierks, T.2    Selmer, T.3    von Figura, K.4    Schmidt, B.5
  • 20
    • 0141922853 scopus 로고    scopus 로고
    • The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro-to eukaryotes
    • Landgrebe J., Dierks T., Schmidt B., and von Figura K. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro-to eukaryotes. Gene 316 (2003) 47-56
    • (2003) Gene , vol.316 , pp. 47-56
    • Landgrebe, J.1    Dierks, T.2    Schmidt, B.3    von Figura, K.4
  • 21
    • 27744537538 scopus 로고    scopus 로고
    • Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship
    • Sardiello M., Annunziata I., Roma G., and Ballabio A. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum. Mol. Genet. 14 (2005) 3203-3217
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 3203-3217
    • Sardiello, M.1    Annunziata, I.2    Roma, G.3    Ballabio, A.4
  • 22
    • 0032986085 scopus 로고    scopus 로고
    • The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase
    • Szameit C., Miech C., Balleininger M., Schmidt B., von Figura K., and Dierks T. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. J. Biol. Chem. 274 (1999) 15375-15381
    • (1999) J. Biol. Chem. , vol.274 , pp. 15375-15381
    • Szameit, C.1    Miech, C.2    Balleininger, M.3    Schmidt, B.4    von Figura, K.5    Dierks, T.6
  • 23
    • 0037462751 scopus 로고    scopus 로고
    • Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB
    • Marquordt C., Fang Q., Will E., Peng J., von Figura K., and Dierks T. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB. J. Biol. Chem. 278 (2003) 2212-2218
    • (2003) J. Biol. Chem. , vol.278 , pp. 2212-2218
    • Marquordt, C.1    Fang, Q.2    Will, E.3    Peng, J.4    von Figura, K.5    Dierks, T.6
  • 24
    • 0037847425 scopus 로고    scopus 로고
    • Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme
    • Dierks T., Schmidt B., Borissenko L.V., Peng J., Preusser A., Mariappan M., and von Figura K. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113 (2003) 435-444
    • (2003) Cell , vol.113 , pp. 435-444
    • Dierks, T.1    Schmidt, B.2    Borissenko, L.V.3    Peng, J.4    Preusser, A.5    Mariappan, M.6    von Figura, K.7
  • 25
    • 33747330135 scopus 로고    scopus 로고
    • A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes
    • Berteau O., Guillot A., Benjdia A., and Rabot S. A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281 (2006) 22464-22470
    • (2006) J. Biol. Chem. , vol.281 , pp. 22464-22470
    • Berteau, O.1    Guillot, A.2    Benjdia, A.3    Rabot, S.4
  • 26
    • 0029860204 scopus 로고    scopus 로고
    • Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982
    • Dotson S.B., Smith C.E., Ling C.S., Barry G.F., and Kishore G.M. Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. J. Biol. Chem. 271 (1996) 25754-25761
    • (1996) J. Biol. Chem. , vol.271 , pp. 25754-25761
    • Dotson, S.B.1    Smith, C.E.2    Ling, C.S.3    Barry, G.F.4    Kishore, G.M.5
  • 27
    • 0030210014 scopus 로고    scopus 로고
    • A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plants
    • Dotson S.B., Lanahan M.B., Smith A.G., and Kishore G.M. A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plants. Plant J. 10 (1996) 383-392
    • (1996) Plant J. , vol.10 , pp. 383-392
    • Dotson, S.B.1    Lanahan, M.B.2    Smith, A.G.3    Kishore, G.M.4
  • 29
    • 0035873714 scopus 로고    scopus 로고
    • Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase
    • O'Brien P.J., and Herschlag D. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 40 (2001) 5691-5699
    • (2001) Biochemistry , vol.40 , pp. 5691-5699
    • O'Brien, P.J.1    Herschlag, D.2
  • 30
    • 0016747613 scopus 로고
    • Hydrolysis of phosphonate esters catalyzed by 5′-nucleotide phosphodiesterase
    • Kelly S.J., Dardinger D.E., and Butler L.G. Hydrolysis of phosphonate esters catalyzed by 5′-nucleotide phosphodiesterase. Biochemistry 14 (1975) 4983-4988
    • (1975) Biochemistry , vol.14 , pp. 4983-4988
    • Kelly, S.J.1    Dardinger, D.E.2    Butler, L.G.3
  • 31
    • 54249126236 scopus 로고    scopus 로고
    • Mechanism and catalytic promiscuity: emerging mechanistic principles for identification and manipulation of catalytically promiscuous enzymes
    • Bornscheuer U., and Lutz S. (Eds), Wiley VCH
    • Jonas S., and Hollfelder F. Mechanism and catalytic promiscuity: emerging mechanistic principles for identification and manipulation of catalytically promiscuous enzymes. In: Bornscheuer U., and Lutz S. (Eds). Handbook of Protein Engineering (2008), Wiley VCH
    • (2008) Handbook of Protein Engineering
    • Jonas, S.1    Hollfelder, F.2
  • 32
    • 54249149606 scopus 로고    scopus 로고
    • Efficient catalytic promiscuity in an enzyme superfamily: an arylsulfatase shows a rate acceleration of 1013 for phosphate monoester hydrolysis
    • Submitted. doi:10.1021/ja8047943
    • Olguin L.F., Askew S.E., O'Donoghue A.M., and Hollfelder F. Efficient catalytic promiscuity in an enzyme superfamily: an arylsulfatase shows a rate acceleration of 1013 for phosphate monoester hydrolysis. J. Am. Chem. Soc. (2008) Submitted. doi:10.1021/ja8047943
    • (2008) J. Am. Chem. Soc.
    • Olguin, L.F.1    Askew, S.E.2    O'Donoghue, A.M.3    Hollfelder, F.4
  • 34
    • 0037255471 scopus 로고    scopus 로고
    • Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
    • Peng J., Schmidt B., von Figura K., and Dierks T. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass. Spectrom. 38 (2003) 80-86
    • (2003) J. Mass. Spectrom. , vol.38 , pp. 80-86
    • Peng, J.1    Schmidt, B.2    von Figura, K.3    Dierks, T.4
  • 35
    • 34249076359 scopus 로고    scopus 로고
    • Introducing genetically encoded aldehydes into proteins
    • Carrico I.S., Carlson B.L., and Bertozzi C.R. Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3 (2007) 321-322
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 321-322
    • Carrico, I.S.1    Carlson, B.L.2    Bertozzi, C.R.3
  • 36
    • 0038265006 scopus 로고    scopus 로고
    • Structure of human estrone sulfatase suggests functional roles of membrane association
    • Hernandez-Guzman F.G., Higashiyama T., Pangborn W., Osawa Y., and Ghosh D. Structure of human estrone sulfatase suggests functional roles of membrane association. J. Biol. Chem. 278 (2003) 22989-22997
    • (2003) J. Biol. Chem. , vol.278 , pp. 22989-22997
    • Hernandez-Guzman, F.G.1    Higashiyama, T.2    Pangborn, W.3    Osawa, Y.4    Ghosh, D.5
  • 37
    • 0015222647 scopus 로고
    • The interpretation of protein structures: estimation of static accessibility
    • Lee B., and Richards F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55 (1971) 379-400
    • (1971) J. Mol. Biol. , vol.55 , pp. 379-400
    • Lee, B.1    Richards, F.M.2
  • 38
    • 0001229341 scopus 로고    scopus 로고
    • Calculation of hydrodynamic properties of globular proteins from their atomic-level structure
    • Garcia De La Torre J., Huertas M.L., and Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78 (2000) 719-730
    • (2000) Biophys. J. , vol.78 , pp. 719-730
    • Garcia De La Torre, J.1    Huertas, M.L.2    Carrasco, B.3
  • 39
    • 0034705337 scopus 로고    scopus 로고
    • A revised mechanism for the alkaline phosphatase reaction involving three metal ions
    • Stec B., Holtz K.M., and Kantrowitz E.R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol. 299 (2000) 1303-1311
    • (2000) J. Mol. Biol. , vol.299 , pp. 1303-1311
    • Stec, B.1    Holtz, K.M.2    Kantrowitz, E.R.3
  • 40
    • 19544383257 scopus 로고    scopus 로고
    • Elemental analysis of proteins by microPIXE
    • Garman E.F., and Grime G.W. Elemental analysis of proteins by microPIXE. Prog. Biophys. Mol. Biol. 89 (2005) 173-205
    • (2005) Prog. Biophys. Mol. Biol. , vol.89 , pp. 173-205
    • Garman, E.F.1    Grime, G.W.2
  • 43
    • 0033617217 scopus 로고    scopus 로고
    • Amino acid residues forming the active site of arylsulfatase A. Role in catalytic activity and substrate binding
    • Waldow A., Schmidt B., Dierks T., von Bulow R., and von Figura K. Amino acid residues forming the active site of arylsulfatase A. Role in catalytic activity and substrate binding. J Biol Chem 274 (1999) 12284-12288
    • (1999) J Biol Chem , vol.274 , pp. 12284-12288
    • Waldow, A.1    Schmidt, B.2    Dierks, T.3    von Bulow, R.4    von Figura, K.5
  • 44
    • 0026773209 scopus 로고
    • Structure and mechanism of alkaline phosphatase
    • Coleman J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21 (1992) 441-483
    • (1992) Annu. Rev. Biophys. Biomol. Struct. , vol.21 , pp. 441-483
    • Coleman, J.E.1
  • 45
    • 0033561117 scopus 로고    scopus 로고
    • Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases
    • Dierks T., Lecca M.R., Schlotterhose P., Schmidt B., and von Figura K. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J. 18 (1999) 2084-2091
    • (1999) EMBO J. , vol.18 , pp. 2084-2091
    • Dierks, T.1    Lecca, M.R.2    Schlotterhose, P.3    Schmidt, B.4    von Figura, K.5
  • 46
    • 33847107131 scopus 로고    scopus 로고
    • First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants
    • Benjdia A., Deho G., Rabot S., and Berteau O. First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants. FEBS Lett. 581 (2007) 1009-1014
    • (2007) FEBS Lett. , vol.581 , pp. 1009-1014
    • Benjdia, A.1    Deho, G.2    Rabot, S.3    Berteau, O.4
  • 47
    • 26844447061 scopus 로고    scopus 로고
    • The thermodynamics of phosphate versus phosphorothioate ester hydrolysis
    • Purcell J., and Hengge A.C. The thermodynamics of phosphate versus phosphorothioate ester hydrolysis. J. Org. Chem. 70 (2005) 8437-8442
    • (2005) J. Org. Chem. , vol.70 , pp. 8437-8442
    • Purcell, J.1    Hengge, A.C.2
  • 48
    • 33747475602 scopus 로고    scopus 로고
    • Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment
    • Hoylaerts M.F., Ding L., Narisawa S., Van Kerckhoven S., and Millan J.L. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45 (2006) 9756-9766
    • (2006) Biochemistry , vol.45 , pp. 9756-9766
    • Hoylaerts, M.F.1    Ding, L.2    Narisawa, S.3    Van Kerckhoven, S.4    Millan, J.L.5
  • 49
    • 35848942616 scopus 로고    scopus 로고
    • Microbial metabolism of reduced phosphorus compounds
    • White A.K., and Metcalf W.W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61 (2007) 379-400
    • (2007) Annu. Rev. Microbiol. , vol.61 , pp. 379-400
    • White, A.K.1    Metcalf, W.W.2
  • 50
    • 0028703434 scopus 로고
    • Molecular genetics of carbon-phosphorus bond cleavage in bacteria
    • Wanner B.L. Molecular genetics of carbon-phosphorus bond cleavage in bacteria. Biodegradation 5 (1994) 175-184
    • (1994) Biodegradation , vol.5 , pp. 175-184
    • Wanner, B.L.1
  • 51
    • 34548379026 scopus 로고    scopus 로고
    • New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling
    • Quinn J.P., Kulakova A.N., Cooley N.A., and McGrath J.W. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ. Microbiol. 9 (2007) 2392-2400
    • (2007) Environ. Microbiol. , vol.9 , pp. 2392-2400
    • Quinn, J.P.1    Kulakova, A.N.2    Cooley, N.A.3    McGrath, J.W.4
  • 52
    • 0035019469 scopus 로고    scopus 로고
    • ABC transporters: physiology, structure and mechanism-an overview
    • Higgins C.F. ABC transporters: physiology, structure and mechanism-an overview. Res. Microbiol. 152 (2001) 205-210
    • (2001) Res. Microbiol. , vol.152 , pp. 205-210
    • Higgins, C.F.1
  • 53
    • 0033117461 scopus 로고    scopus 로고
    • Catalytic promiscuity and the evolution of new enzymatic activities
    • O'Brien P.J., and Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6 (1999) R91-R105
    • (1999) Chem. Biol. , vol.6
    • O'Brien, P.J.1    Herschlag, D.2
  • 55
    • 0037396292 scopus 로고    scopus 로고
    • Enzymes with extra talents: moonlighting functions and catalytic promiscuity
    • Copley S.D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7 (2003) 265-272
    • (2003) Curr. Opin. Chem. Biol. , vol.7 , pp. 265-272
    • Copley, S.D.1
  • 56
    • 0032477286 scopus 로고    scopus 로고
    • Sulfatase activity of E. coli alkaline phosphatase demonstrates a functional link to arylsulfatases, an evolutionarily related enzyme family
    • O'Brien P.J., and Herschlag D. Sulfatase activity of E. coli alkaline phosphatase demonstrates a functional link to arylsulfatases, an evolutionarily related enzyme family. J. Am. Chem. Soc. 120 (1998) 12369-12370
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 12369-12370
    • O'Brien, P.J.1    Herschlag, D.2
  • 57
    • 33845184901 scopus 로고
    • Metal ion promoted phosphate ester hydrolysis. intramolecular attack of coordinated hydroxide ion
    • Hendry P., and Sargeson A.M. Metal ion promoted phosphate ester hydrolysis. intramolecular attack of coordinated hydroxide ion. J. Am. Chem. Soc. 111 (1989) 2521-2527
    • (1989) J. Am. Chem. Soc. , vol.111 , pp. 2521-2527
    • Hendry, P.1    Sargeson, A.M.2
  • 58
    • 0023613953 scopus 로고
    • Rapid and efficient site-specific mutagenesis without phenotypic selection
    • Kunkel T.A., Roberts J.D., and Zakour R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154 (1987) 367-382
    • (1987) Methods Enzymol. , vol.154 , pp. 367-382
    • Kunkel, T.A.1    Roberts, J.D.2    Zakour, R.A.3
  • 59
    • 0027879008 scopus 로고
    • Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
    • Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26 (1993) 795-800
    • (1993) J. Appl. Crystallogr. , vol.26 , pp. 795-800
    • Kabsch, W.1
  • 61
    • 0013054388 scopus 로고    scopus 로고
    • Macromolecular phasing with SHELXE
    • Sheldrick G.M. Macromolecular phasing with SHELXE. Z. Kristallogr. 217 (2002) 644-650
    • (2002) Z. Kristallogr. , vol.217 , pp. 644-650
    • Sheldrick, G.M.1
  • 62
    • 4644366388 scopus 로고    scopus 로고
    • HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs
    • Pape T., and Schneider T.R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 37 (2004) 843-844
    • (2004) J. Appl. Crystallogr. , vol.37 , pp. 843-844
    • Pape, T.1    Schneider, T.R.2
  • 63
    • 0032964481 scopus 로고    scopus 로고
    • Automated protein model building combined with iterative structure refinement
    • Perrakis A., Morris R., and Lamzin V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6 (1999) 458-463
    • (1999) Nat. Struct. Biol. , vol.6 , pp. 458-463
    • Perrakis, A.1    Morris, R.2    Lamzin, V.S.3
  • 65
    • 84920325457 scopus 로고
    • AMoRe: an automated package for molecular replacement
    • Navaza J. AMoRe: an automated package for molecular replacement. Acta Crystallogr., Sect. A 50 (1994) 157-163
    • (1994) Acta Crystallogr., Sect. A , vol.50 , pp. 157-163
    • Navaza, J.1
  • 68


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.