-
2
-
-
77956891548
-
A note on the estimation of a distribution function and quantiles by a kernel method
-
Azzalini A. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68 (1981) 326-328
-
(1981)
Biometrika
, vol.68
, pp. 326-328
-
-
Azzalini, A.1
-
3
-
-
0001036819
-
A class of distributions which includes the normal ones
-
Azzalini A. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12 (1985) 171-178
-
(1985)
Scandinavian Journal of Statistics
, vol.12
, pp. 171-178
-
-
Azzalini, A.1
-
4
-
-
0037900005
-
Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution
-
Azzalini A., and Capitanio A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. Journal of the Royal Statistical Society, Series B 65 (2003) 367-389
-
(2003)
Journal of the Royal Statistical Society, Series B
, vol.65
, pp. 367-389
-
-
Azzalini, A.1
Capitanio, A.2
-
5
-
-
41849143354
-
Robust likelihood methods based on the skew-t and related distributions
-
Azzalini A., and Genton M.G. Robust likelihood methods based on the skew-t and related distributions. International Statistical Review 76 (2008) 106-129
-
(2008)
International Statistical Review
, vol.76
, pp. 106-129
-
-
Azzalini, A.1
Genton, M.G.2
-
7
-
-
0035178888
-
A general class of multivariate skew-elliptical distributions
-
Branco M.D., and Dey D.K. A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis 79 (2001) 99-113
-
(2001)
Journal of Multivariate Analysis
, vol.79
, pp. 99-113
-
-
Branco, M.D.1
Dey, D.K.2
-
8
-
-
84952493965
-
On the transition from Student's z to Student's t
-
Eisenhart C. On the transition from Student's z to Student's t. The American Statistician 33 (1979) 6-10
-
(1979)
The American Statistician
, vol.33
, pp. 6-10
-
-
Eisenhart, C.1
-
11
-
-
39049169142
-
Student's z, t, and s: What if Gosset had R?
-
Hanley J.A., Julien M., and Moodie E.E.M. Student's z, t, and s: What if Gosset had R?. American Statistician 62 (2008) 64-69
-
(2008)
American Statistician
, vol.62
, pp. 64-69
-
-
Hanley, J.A.1
Julien, M.2
Moodie, E.E.M.3
-
12
-
-
39049139625
-
Systems of frequency curves generated by methods of translation
-
Johnson N.L. Systems of frequency curves generated by methods of translation. Biometrika 36 (1949) 149-176
-
(1949)
Biometrika
, vol.36
, pp. 149-176
-
-
Johnson, N.L.1
-
14
-
-
0038892179
-
Student's simplest distribution
-
Jones M.C. Student's simplest distribution. Statistician 51 (2002) 41-49
-
(2002)
Statistician
, vol.51
, pp. 41-49
-
-
Jones, M.C.1
-
15
-
-
11144322968
-
Families of distributions arising from distributions of order statistics (with discussion)
-
Jones M.C. Families of distributions arising from distributions of order statistics (with discussion). Test 13 (2004) 1-43
-
(2004)
Test
, vol.13
, pp. 1-43
-
-
Jones, M.C.1
-
16
-
-
33745005960
-
A note on rescalings, reparametrizations and classes of distributions
-
Jones M.C. A note on rescalings, reparametrizations and classes of distributions. Journal of Statistical Planning and Inference 136 (2006) 3730-3733
-
(2006)
Journal of Statistical Planning and Inference
, vol.136
, pp. 3730-3733
-
-
Jones, M.C.1
-
17
-
-
54049136693
-
-
Jones, M.C. (2006b). On a class of distributions with simple exponential tails. Open University Department of Statistics technical report 06/02. Available from http://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
Jones, M.C. (2006b). On a class of distributions with simple exponential tails. Open University Department of Statistics technical report 06/02. Available from http://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
-
-
-
18
-
-
54049139053
-
-
Jones, M. C. (in press-a). The logistic and the log F distribution. In Baghdachi, J., Balakrishnan N., (Eds.), Handbook of the Logistic Distribution, 2nd ed. (chap 10). Version available as Open University Department of Statistics technical report 06/01 from http://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
Jones, M. C. (in press-a). The logistic and the log F distribution. In Baghdachi, J., Balakrishnan N., (Eds.), Handbook of the Logistic Distribution, 2nd ed. (chap 10). Version available as Open University Department of Statistics technical report 06/01 from http://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
-
-
-
19
-
-
54049101322
-
-
Jones, M. C. (in press-b). On a class of distributions with simple exponential tails. Statistica Sinica. Version with additional material available as Jones (2006b)
-
Jones, M. C. (in press-b). On a class of distributions with simple exponential tails. Statistica Sinica. Version with additional material available as Jones (2006b)
-
-
-
-
21
-
-
54049156298
-
-
Jones, M.C., & Pewsey, A. (2008). Sinh-arcsinh distributions: A broad family giving rise to powerful tests of normality and symmetry (in preparation). Open University Statistics Group Technical Report 08/06. Available fromhttp://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
Jones, M.C., & Pewsey, A. (2008). Sinh-arcsinh distributions: A broad family giving rise to powerful tests of normality and symmetry (in preparation). Open University Statistics Group Technical Report 08/06. Available fromhttp://statistics.open.ac.uk/TechnicalReports/TechnicalReportsIntro.htm
-
-
-
-
22
-
-
45249103068
-
Improved double kernel local linear regression
-
Jones M.C., and Yu K. Improved double kernel local linear regression. Statistical Modelling 7 (2007) 377-389
-
(2007)
Statistical Modelling
, vol.7
, pp. 377-389
-
-
Jones, M.C.1
Yu, K.2
-
23
-
-
0003939997
-
-
Birkhauser, Boston
-
Kotz S., Kozubowski T.J., and Podgórski K. The Laplace distribution and generalizations; A revisit with applications to communications, economics, engineering, and finance (2001), Birkhauser, Boston
-
(2001)
The Laplace distribution and generalizations; A revisit with applications to communications, economics, engineering, and finance
-
-
Kotz, S.1
Kozubowski, T.J.2
Podgórski, K.3
-
25
-
-
0026108164
-
A log-linear model for the Birnbaum-Saunders distribution
-
Rieck J.R., and Nedelman J.R. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33 (1991) 51-60
-
(1991)
Technometrics
, vol.33
, pp. 51-60
-
-
Rieck, J.R.1
Nedelman, J.R.2
-
26
-
-
85041975578
-
Cauchy and the witch of Agnesi: An historical note on the Cauchy distribution
-
Stigler S. Cauchy and the witch of Agnesi: An historical note on the Cauchy distribution. Biometrika 61 (1974) 375-380
-
(1974)
Biometrika
, vol.61
, pp. 375-380
-
-
Stigler, S.1
-
27
-
-
0345399126
-
The probable error of a mean
-
Student
-
Student. The probable error of a mean. Biometrika 6 (1908) 1-25
-
(1908)
Biometrika
, vol.6
, pp. 1-25
-
-
-
29
-
-
42349088737
-
On Student's 1908 article "The probable error of a mean" (with discussion)
-
Zabell S.A. On Student's 1908 article "The probable error of a mean" (with discussion). Journal of the American Statistical Association 103 (2008) 1-20
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 1-20
-
-
Zabell, S.A.1
|