메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages

Gene and pathway identification with Lp penalized Bayesian logistic regression

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL SIGNIFICANCE; COMPUTATIONAL BIOLOGY; DIFFERENTIAL EXPRESSIONS; PARSIMONIOUS MODELING; PATHWAY IDENTIFICATION; PERFORMANCE ESTIMATION; REGULARIZATION PARAMETERS; THREE ORDERS OF MAGNITUDE;

EID: 54049131739     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-9-412     Document Type: Article
Times cited : (14)

References (22)
  • 1
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • 10.1186/gb-2002-3-4-research0017
    • Bo T Jonassen I New feature subset selection procedures for classification of expression profiles Genome Biology 2002, 3(4):0017. 10.1186/gb-2002-3-4-research0017
    • (2002) Genome Biology , vol.3 , Issue.4 , pp. 0017
    • Bo, T.1    Jonassen, I.2
  • 2
    • 0035826360 scopus 로고    scopus 로고
    • Identifying marker genes in transcription profiling data using a mixture of feature relevance experts
    • 11242594
    • Chow M Moler E Mian I Identifying marker genes in transcription profiling data using a mixture of feature relevance experts Physiol Genomics 2001, 5:99-111. 11242594
    • (2001) Physiol Genomics , vol.5 , pp. 99-111
    • Chow, M.1    Moler, E.2    Mian, I.3
  • 3
    • 0346825283 scopus 로고    scopus 로고
    • MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for Nonlinear Modeling
    • 10.1162/153244303322753724
    • Rivals I Personnaz L MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for Nonlinear Modeling Journal of Machine Learning Research 2003, 3:1383-1398. 10.1162/153244303322753724
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1383-1398
    • Rivals, I.1    Personnaz, L.2
  • 4
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • 10.1093/bioinformatics/bti736 16249260
    • Zhang H Ahn J Lin X Park C Gene selection using support vector machines with non-convex penalty Bioinformatics 2006, 22(1):88-95. 10.1093/ bioinformatics/bti736 16249260
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 88-95
    • Zhang, H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 5
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • 10.1162/15324430152748236
    • Tipping M Sparse Bayesian learning and the relevance vector machine Journal of Machine Learning Research 2001, 1:211-244. 10.1162/ 15324430152748236
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 6
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • 10.1093/bioinformatics/18.10.1332 12376377
    • Li Y Campbell C Tipping M Bayesian automatic relevance determination algorithms for classifying gene expression data Bioinformatics 2002, 18:1332-1339. 10.1093/bioinformatics/18.10.1332 12376377
    • (2002) Bioinformatics , vol.18 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 7
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R Regression shrinkage and selection via the lasso J Royal Statist Soc B 1996, 58(1):267-288.
    • (1996) J Royal Statist Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 9
    • 34548536008 scopus 로고    scopus 로고
    • On the 'Degree of Freedom' of the Lasso
    • 10.1214/009053607000000127
    • Zou H Hastie T Tibshirani R On the 'Degree of Freedom' of the Lasso Annals of Statistics 2007, 35(5):2173-2192. 10.1214/009053607000000127
    • (2007) Annals of Statistics , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • 10.1093/bioinformatics/btg308 14630653
    • Shevade S Keerthi S A simple and efficient algorithm for gene selection using sparse logistic regression Bioinformatics 2003, 19:2246-2253. 10.1093/bioinformatics/btg308 14630653
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 11
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation
    • 10.1093/bioinformatics/btl386 16844704
    • Cawley G Talbot N Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation Bioinformatics 2006, 22(19):2348-2355. 10.1093/bioinformatics/btl386 16844704
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G.1    Talbot, N.2
  • 13
    • 0742321914 scopus 로고    scopus 로고
    • Regression approaches for microarray data analysis
    • 10.1089/106652703322756177 14980020
    • Segal M Dahlquist K BR C Regression approaches for microarray data analysis Journal of Computational Biology 2003, 10:961-980. 10.1089/ 106652703322756177 14980020
    • (2003) Journal of Computational Biology , vol.10 , pp. 961-980
    • Segal, M.1    Dahlquist, K.B.R.C.2
  • 15
    • 33847162049 scopus 로고    scopus 로고
    • Classification of microarray data using gene networks
    • 1797191 17270037 10.1186/1471-2105-8-35
    • Rapaport F Zinovyev A Dutreix M Barillot E Vert J Classification of microarray data using gene networks BMC Bioinformatics 2007, 8:35. 1797191 17270037 10.1186/1471-2105-8-35
    • (2007) BMC Bioinformatics , vol.8 , pp. 35
    • Rapaport, F.1    Zinovyev, A.2    Dutreix, M.3    Barillot, E.4    Vert, J.5
  • 16
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • 10.1214/aos/1015957397
    • Knight K Fu W Asymptotics for Lasso-type estimators Annals of Statistics 2000, 28:1356-1378. 10.1214/aos/1015957397
    • (2000) Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 21
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • 10.1162/089976699300016331
    • MacKay D Comparison of approximate methods for handling hyperparameters Neural Computation 1999, 11(5):1035-1068. 10.1162/089976699300016331
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.1
  • 22
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • 10.1162/neco.1995.7.1.117
    • Williams P Bayesian regularization and pruning using a Laplace prior Neural Computation 1995, 7(1):117-143. 10.1162/neco.1995.7.1.117
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.