메뉴 건너뛰기




Volumn 94, Issue 2, 2009, Pages 432-444

Optimal power system generation scheduling by multi-objective genetic algorithms with preferences

Author keywords

Environmental safety; Evolutionary algorithm; Guided dominance; Multi objective optimization; Pareto optimality; Power system generation scheduling; Preferences; Weights

Indexed keywords

ALGORITHMS; BOOLEAN FUNCTIONS; DIESEL ENGINES; ELECTRIC POWER SYSTEMS; ELECTRIC POWER TRANSMISSION NETWORKS; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; LEARNING ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION; NUMERICAL METHODS; OPTIMIZATION; POWER TRANSMISSION; SAFETY ENGINEERING; SCHEDULING; SCHEDULING ALGORITHMS; SET THEORY; SOLUTIONS;

EID: 54049126901     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2008.04.004     Document Type: Article
Times cited : (37)

References (46)
  • 1
    • 0027647348 scopus 로고
    • Effects of ramp-rate limits on unit commitment and economic dispatch
    • Wang C., and Shahidehpour S.M. Effects of ramp-rate limits on unit commitment and economic dispatch. IEEE Trans Power Syst 8 3 (1993)
    • (1993) IEEE Trans Power Syst , vol.8 , Issue.3
    • Wang, C.1    Shahidehpour, S.M.2
  • 2
    • 0023401167 scopus 로고
    • A method for solving the fuel constrained unit commitment problem
    • Cohen A.I., and Wan S.H. A method for solving the fuel constrained unit commitment problem. IEEE Trans Power Syst PWRS-2 (1987) 608-614
    • (1987) IEEE Trans Power Syst , vol.PWRS-2 , pp. 608-614
    • Cohen, A.I.1    Wan, S.H.2
  • 3
    • 0016978198 scopus 로고
    • Optimal short-term thermal unit commitment
    • Pang C.K., and Chen H.C. Optimal short-term thermal unit commitment. IEEE Trans Power Apparatus Syst PAS-95 4 (1976) 1336-1346
    • (1976) IEEE Trans Power Apparatus Syst , vol.PAS-95 , Issue.4 , pp. 1336-1346
    • Pang, C.K.1    Chen, H.C.2
  • 5
    • 0004128564 scopus 로고    scopus 로고
    • Optimal scheduling of thermal power generation using evolutionary algorithms
    • Dasgupta D., and Michalewicz Z. (Eds), Springer, Berlin, Heidelberg
    • Dasgupta D. Optimal scheduling of thermal power generation using evolutionary algorithms. In: Dasgupta D., and Michalewicz Z. (Eds). Evolutionary algorithms in engineering applications (1997), Springer, Berlin, Heidelberg 317-328
    • (1997) Evolutionary algorithms in engineering applications , pp. 317-328
    • Dasgupta, D.1
  • 6
    • 54049108205 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms for electric power dispatch problem
    • Abido M.A. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput (2005)
    • (2005) IEEE Trans Evol Comput
    • Abido, M.A.1
  • 7
    • 0029305029 scopus 로고
    • Economic load dispatch multiobjective optimization procedures using linear programming techniques
    • Farag A., Al-Baiyat, and Cheng T.C. Economic load dispatch multiobjective optimization procedures using linear programming techniques. IEEE Trans Power Syst 10 (1995) 731-738
    • (1995) IEEE Trans Power Syst , vol.10 , pp. 731-738
    • Farag, A.1    Al-Baiyat2    Cheng, T.C.3
  • 8
    • 0034201456 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: analyzing the state of the art
    • Van Velduhuizen D.A., and Lamont G.B. Multi-objective evolutionary algorithms: analyzing the state of the art. Evol Comput 8 2 (2000) 125-148
    • (2000) Evol Comput , vol.8 , Issue.2 , pp. 125-148
    • Van Velduhuizen, D.A.1    Lamont, G.B.2
  • 9
    • 0032141635 scopus 로고    scopus 로고
    • A multi-objective genetic local search algorithm and its application to flowshop scheduling
    • Ishibuchi H., and Murata T. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybernet C Appl Rev 28 3 (1998)
    • (1998) IEEE Trans Syst Man Cybernet C Appl Rev , vol.28 , Issue.3
    • Ishibuchi, H.1    Murata, T.2
  • 10
    • 0000294949 scopus 로고
    • Application of genetic algorithms to task planning and learning
    • Männer R., and Manderick B. (Eds), North-Holland, Amsterdam, The Netherlands
    • Jakob W.D., Gorges-Schleuter M., and Blume C. Application of genetic algorithms to task planning and learning. In: Männer R., and Manderick B. (Eds). Parallel problem solving from nature, 2 (1992), North-Holland, Amsterdam, The Netherlands 291-300
    • (1992) Parallel problem solving from nature, 2 , pp. 291-300
    • Jakob, W.D.1    Gorges-Schleuter, M.2    Blume, C.3
  • 11
    • 0002754761 scopus 로고    scopus 로고
    • Directed multiple objective search of design spaces using genetic algorithms and neural networks
    • Banzhaf W. (Ed), Morgan Kauffmann, San Francisco
    • Todd D.S., and Sen P. Directed multiple objective search of design spaces using genetic algorithms and neural networks. In: Banzhaf W. (Ed). Genetic and evolutionary computation conference proceedings (1999), Morgan Kauffmann, San Francisco 1738-1743
    • (1999) Genetic and evolutionary computation conference proceedings , pp. 1738-1743
    • Todd, D.S.1    Sen, P.2
  • 12
    • 54049135725 scopus 로고    scopus 로고
    • Coello CAC. A comprehensive survey of evolutionary based multi-objective optimization techniques. Unpublished document, 1998.
    • Coello CAC. A comprehensive survey of evolutionary based multi-objective optimization techniques. Unpublished document, 1998.
  • 13
    • 54049147448 scopus 로고    scopus 로고
    • Deb K. Evolutionary algorithms for multi-criterion optimization in engineering design. In: Miettinen K, Mäkelä M, Neittaanmäki P, Periaux J, editors. Proceedings of evolutionary algorithms in engineering and computer science (EUROGEN-99), 1999. p. 135-61.
    • Deb K. Evolutionary algorithms for multi-criterion optimization in engineering design. In: Miettinen K, Mäkelä M, Neittaanmäki P, Periaux J, editors. Proceedings of evolutionary algorithms in engineering and computer science (EUROGEN-99), 1999. p. 135-61.
  • 14
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multi-objective optimization
    • Fonseca C.M., and Fleming P.J. An overview of evolutionary algorithms in multi-objective optimization. Evol Comput 3 1 (1995) 1-16
    • (1995) Evol Comput , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 15
    • 54049148289 scopus 로고    scopus 로고
    • Horn J. Multicriterion decision making. In: Back T, et al., editors. Handbook of evolutionary computation, 1997.
    • Horn J. Multicriterion decision making. In: Back T, et al., editors. Handbook of evolutionary computation, 1997.
  • 16
    • 84901456223 scopus 로고    scopus 로고
    • Solving goal programming problems using multi-objective genetic algorithms
    • Deb K. Solving goal programming problems using multi-objective genetic algorithms. Congress Evolut Comput IEEE 1 (1999) 77-84
    • (1999) Congress Evolut Comput IEEE , vol.1 , pp. 77-84
    • Deb, K.1
  • 17
    • 0002614549 scopus 로고    scopus 로고
    • Use of preferences for GA-based multi-objective optimization
    • Banzhaf W., and Daida J. (Eds), Morgan Kauffmann, San Mateo, CA
    • Cvetkovic D., and Parmee I.C. Use of preferences for GA-based multi-objective optimization. In: Banzhaf W., and Daida J. (Eds). GECCO-99: proceedings of the genetic and evolutionary computation conference (1999), Morgan Kauffmann, San Mateo, CA 255-257
    • (1999) GECCO-99: proceedings of the genetic and evolutionary computation conference , pp. 255-257
    • Cvetkovic, D.1    Parmee, I.C.2
  • 18
    • 0034201728 scopus 로고    scopus 로고
    • Multi-objective satisfaction within an interactive evolutionary design environment
    • Parmee I.C., Cvetkovic D., Watson A.H., and Bonham C.R. Multi-objective satisfaction within an interactive evolutionary design environment. Evol Comput 8 2 (2000) 197-222
    • (2000) Evol Comput , vol.8 , Issue.2 , pp. 197-222
    • Parmee, I.C.1    Cvetkovic, D.2    Watson, A.H.3    Bonham, C.R.4
  • 19
    • 0035370797 scopus 로고    scopus 로고
    • Guidance in evolutionary multi-objective optimization
    • Branke J., Kauβler T., and Schmeck H. Guidance in evolutionary multi-objective optimization. Adv Eng Software 32 (2001) 499-507
    • (2001) Adv Eng Software , vol.32 , pp. 499-507
    • Branke, J.1    Kaußler, T.2    Schmeck, H.3
  • 20
    • 54049090873 scopus 로고    scopus 로고
    • Branke J, Kauβler T, Schmeck H. Guiding multi-objective evolutionary algorithms towards interesting regions. Technical report TR no. 399. Institute AIFB, University of Karlsruhe, Germany, 2000.
    • Branke J, Kauβler T, Schmeck H. Guiding multi-objective evolutionary algorithms towards interesting regions. Technical report TR no. 399. Institute AIFB, University of Karlsruhe, Germany, 2000.
  • 24
    • 0345337896 scopus 로고    scopus 로고
    • Genetic algorithm-based multi-objective optimization and conceptual engineering design
    • IEEE Press, Piscataway, NJ
    • Cvetkovic D., and Parmee I.C. Genetic algorithm-based multi-objective optimization and conceptual engineering design. Proceedings of the 1999 congress on evolutionary computation, CEC99 (1999), IEEE Press, Piscataway, NJ 29-36
    • (1999) Proceedings of the 1999 congress on evolutionary computation, CEC99 , pp. 29-36
    • Cvetkovic, D.1    Parmee, I.C.2
  • 25
    • 54049148698 scopus 로고    scopus 로고
    • Winter G, Greiner D, Gonzalez B, Galvan B. Economical and environmental electric power dispatch optimization. In: EUROGEN-2003 conference, 2003.
    • Winter G, Greiner D, Gonzalez B, Galvan B. Economical and environmental electric power dispatch optimization. In: EUROGEN-2003 conference, 2003.
  • 28
    • 0033672413 scopus 로고    scopus 로고
    • Handling preferences in evolutionary multi-objective optimization: a survey
    • IEEE, New York
    • Coello C.A.C. Handling preferences in evolutionary multi-objective optimization: a survey. Congress on evolutionary computation vol. 1 (2000), IEEE, New York 30-37
    • (2000) Congress on evolutionary computation , vol.1 , pp. 30-37
    • Coello, C.A.C.1
  • 29
    • 54049113163 scopus 로고    scopus 로고
    • Fonseca CM, Fleming PJ. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms. 1993, p. 416-23.
    • Fonseca CM, Fleming PJ. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms. 1993, p. 416-23.
  • 30
    • 54049124759 scopus 로고    scopus 로고
    • Cvetkovic D. Evolutionary multi-objective decision support systems for conceptual design. PhD dissertation, School of Computing, University Plymouth, Plymouth, UK, 2000.
    • Cvetkovic D. Evolutionary multi-objective decision support systems for conceptual design. PhD dissertation, School of Computing, University Plymouth, Plymouth, UK, 2000.
  • 31
    • 0036464795 scopus 로고    scopus 로고
    • Preferences and their application in evolutionary multi-objective optimization
    • Cvetkovic D., and Parmee I.C. Preferences and their application in evolutionary multi-objective optimization. IEEE Trans Evol Comput 6 1 (2002)
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.1
    • Cvetkovic, D.1    Parmee, I.C.2
  • 32
    • 0006244055 scopus 로고    scopus 로고
    • Multi-objective optimization and preliminary airframe design
    • Parmee I.C. (Ed), Springer, Berlin, Germany
    • Cvetkovic D., Parmee I.C., and Webb E. Multi-objective optimization and preliminary airframe design. In: Parmee I.C. (Ed). Adaptive computing in design and manufacture (1998), Springer, Berlin, Germany 255-267
    • (1998) Adaptive computing in design and manufacture , pp. 255-267
    • Cvetkovic, D.1    Parmee, I.C.2    Webb, E.3
  • 33
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • Srinivas N., and Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2 3 (1995) 221-248
    • (1995) Evol Comput , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 34
    • 0000543158 scopus 로고    scopus 로고
    • Designer's preferences in multi-objective preliminary design processes
    • Parmee I.C. (Ed), Springer, Berlin
    • Cvetkovic D., and Parmee I.C. Designer's preferences in multi-objective preliminary design processes. In: Parmee I.C. (Ed). Adaptive computing and manifacture (2000), Springer, Berlin 249-260
    • (2000) Adaptive computing and manifacture , pp. 249-260
    • Cvetkovic, D.1    Parmee, I.C.2
  • 35
    • 84931357345 scopus 로고    scopus 로고
    • Adaptive weighted aggregation for multi-objective evolution strategies
    • Zitzler E., Deb K., Thiele L., Coello Coello C., and Corne D. (Eds), Springer, Berlin [vol. 1993 in LNCS]
    • Jin Y., Okabe T., and Sendhoff B. Adaptive weighted aggregation for multi-objective evolution strategies. In: Zitzler E., Deb K., Thiele L., Coello Coello C., and Corne D. (Eds). Evolutionary multi-criterion optimization (2001), Springer, Berlin 96-110 [vol. 1993 in LNCS]
    • (2001) Evolutionary multi-criterion optimization , pp. 96-110
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 36
    • 54049131329 scopus 로고    scopus 로고
    • Deb K. Multi-objective evolutionary algorithms: introducing bias among Pareto optimal solutions. Technical report KanGAL report no. 99002. Kanpur Genetic Algorithm Laboratory, 1999.
    • Deb K. Multi-objective evolutionary algorithms: introducing bias among Pareto optimal solutions. Technical report KanGAL report no. 99002. Kanpur Genetic Algorithm Laboratory, 1999.
  • 37
    • 54049129769 scopus 로고    scopus 로고
    • Branke J, Deb K. Integrating preferences into evolutionary multi-objective optimization. Technical report KanGAL report no. 2004004. Kanpur Genetic Algorithm Laboratory, 2003.
    • Branke J, Deb K. Integrating preferences into evolutionary multi-objective optimization. Technical report KanGAL report no. 2004004. Kanpur Genetic Algorithm Laboratory, 2003.
  • 38
    • 0028542026 scopus 로고
    • The PROMCALC & GAIA decision support system for multicriteria decision aid
    • Brans J.P., and Mareschal B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decision Support Syst 12 4-5 (1994) 297-310
    • (1994) Decision Support Syst , vol.12 , Issue.4-5 , pp. 297-310
    • Brans, J.P.1    Mareschal, B.2
  • 40
    • 0000044423 scopus 로고    scopus 로고
    • Preliminary airframe design using co-evolutionary multiobjective genetic algorithms
    • Banzhaf W., and Daida J. (Eds), Morgan Kaufmann, San Mateo, CA
    • Parmee I.C., and Watson A.H. Preliminary airframe design using co-evolutionary multiobjective genetic algorithms. In: Banzhaf W., and Daida J. (Eds). GECCO-99: proceedings of the genetic and evolutionary computation conference (1999), Morgan Kaufmann, San Mateo, CA 1657-1665
    • (1999) GECCO-99: proceedings of the genetic and evolutionary computation conference , pp. 1657-1665
    • Parmee, I.C.1    Watson, A.H.2
  • 41
    • 0003311221 scopus 로고    scopus 로고
    • Global properties of evolution processes
    • Pattee H.H., Edlsack E.A., Fein L., and Callahan A.B. (Eds), Spartan, Washington, DC
    • Bremermann H.J., Rogson M., and Salaff S. Global properties of evolution processes. In: Pattee H.H., Edlsack E.A., Fein L., and Callahan A.B. (Eds). Natural automata and useful simulation (1996), Spartan, Washington, DC 3-41
    • (1996) Natural automata and useful simulation , pp. 3-41
    • Bremermann, H.J.1    Rogson, M.2    Salaff, S.3
  • 42
    • 0002091030 scopus 로고
    • How genetic algorithms really work-Part I: Mutation and hillclimbing
    • Männer R., and Manderick B. (Eds), North-Holland, Amsterdam
    • Mühlenbein H. How genetic algorithms really work-Part I: Mutation and hillclimbing. In: Männer R., and Manderick B. (Eds). Proceedings of second conference parallel problem solving from nature (1992), North-Holland, Amsterdam 15-25
    • (1992) Proceedings of second conference parallel problem solving from nature , pp. 15-25
    • Mühlenbein, H.1
  • 43
    • 0029700131 scopus 로고    scopus 로고
    • Self-adaptation of mutation rates in a steady-state genetic algorithm
    • IEEE Press, Piscataway, NJ
    • Smith J., and Fogarty T. Self-adaptation of mutation rates in a steady-state genetic algorithm. Proceedings of third IEEE conference evolutionary computation (1996), IEEE Press, Piscataway, NJ 318-323
    • (1996) Proceedings of third IEEE conference evolutionary computation , pp. 318-323
    • Smith, J.1    Fogarty, T.2
  • 44
    • 33745663528 scopus 로고    scopus 로고
    • Basics of genetic algorithms optimization for RAMS applications
    • Marseguerra M., Zio E., and Martorell S. Basics of genetic algorithms optimization for RAMS applications. Reliab Eng Syst Saf 91 9 (2006) 977-991
    • (2006) Reliab Eng Syst Saf , vol.91 , Issue.9 , pp. 977-991
    • Marseguerra, M.1    Zio, E.2    Martorell, S.3
  • 45
    • 33746363218 scopus 로고    scopus 로고
    • Selecting features for nuclear transients classification by means of genetic algorithms
    • Zio E., Baraldi P., and Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms. IEEE Trans Nucl Sci 53 3 (2006) 1479-1493
    • (2006) IEEE Trans Nucl Sci , vol.53 , Issue.3 , pp. 1479-1493
    • Zio, E.1    Baraldi, P.2    Pedroni, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.