메뉴 건너뛰기




Volumn 73, Issue 5, 2008, Pages 815-835

Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment

Author keywords

Diffusion; Heterogeneous environments; Holling Tanner prey predator model; Positive steady states; Spatial patterns

Indexed keywords

HETEROGENEOUS ENVIRONMENTS; HOLLING-TANNER PREY-PREDATOR MODEL; NEUMANN BOUNDARY CONDITIONS; POSITIVE STEADY STATES; SPATIAL PATTERNS; STATE SOLUTIONS;

EID: 54049103310     PISSN: 02724960     EISSN: 14643634     Source Type: Journal    
DOI: 10.1093/imamat/hxn016     Document Type: Article
Times cited : (16)

References (21)
  • 1
    • 0037490631 scopus 로고    scopus 로고
    • BRAZA, P. A.(2003) The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing. SIAM J. Appl. Math., 63, 889-904.
    • BRAZA, P. A.(2003) The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing. SIAM J. Appl. Math., 63, 889-904.
  • 2
    • 0029105665 scopus 로고    scopus 로고
    • COLLINGS, J. B.(1995) Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull. Math. Biol., 57, 63-76.
    • COLLINGS, J. B.(1995) Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull. Math. Biol., 57, 63-76.
  • 3
    • 0037243354 scopus 로고    scopus 로고
    • Effects of certain degeneracies in the predator-prey model
    • DANCER, E. N. & Du, Y. H.(2002) Effects of certain degeneracies in the predator-prey model. SIAM J. Math. Anal., 34, 292-314.
    • (2002) SIAM J. Math. Anal , vol.34 , pp. 292-314
    • DANCER, E.N.1    Du, Y.H.2
  • 4
    • 0036573310 scopus 로고    scopus 로고
    • DU, Y. H.(2002a) Effects of a degeneracy in the competition model, part I: Classical and generalized steady-state solutions. J. Differ. Equ., 181, 92-132.
    • DU, Y. H.(2002a) Effects of a degeneracy in the competition model, part I: Classical and generalized steady-state solutions. J. Differ. Equ., 181, 92-132.
  • 5
    • 0036572632 scopus 로고    scopus 로고
    • DU, Y. H.(2002b) Effects of a degeneracy in the competition model, part II: Perturbation and dynamical behaviour. J. Differ. Equ. 181, 133-164.
    • DU, Y. H.(2002b) Effects of a degeneracy in the competition model, part II: Perturbation and dynamical behaviour. J. Differ. Equ. 181, 133-164.
  • 6
    • 0041513380 scopus 로고    scopus 로고
    • DU, Y. H.(2003) Realization of prescribed patterns in the competition model. J. Differ. Equ., 193, 147-179.
    • DU, Y. H.(2003) Realization of prescribed patterns in the competition model. J. Differ. Equ., 193, 147-179.
  • 7
    • 3343010401 scopus 로고    scopus 로고
    • A diffusive predator-prey model in heterogeneous environment
    • DU, Y. H. & HSU, S. B.(2004) A diffusive predator-prey model in heterogeneous environment. J. Differ. Equ., 203, 331-364.
    • (2004) J. Differ. Equ , vol.203 , pp. 331-364
    • DU, Y.H.1    HSU, S.B.2
  • 8
    • 0041919110 scopus 로고    scopus 로고
    • Positive solutions with prescribed patterns in some simple semilinear equations
    • DU, Y. H. & LI, S. J.(2002) Positive solutions with prescribed patterns in some simple semilinear equations. Differ. Integral Equ. 15, 805-822.
    • (2002) Differ. Integral Equ , vol.15 , pp. 805-822
    • DU, Y.H.1    LI, S.J.2
  • 9
    • 36148940895 scopus 로고    scopus 로고
    • Allee effect and bistability in a spatially heterogeneous predator-prey model
    • DU, Y. H. & SHI, J. P.(2007) Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans. Am. Math. Soc. 359, 4557-4593.
    • (2007) Trans. Am. Math. Soc , vol.359 , pp. 4557-4593
    • DU, Y.H.1    SHI, J.P.2
  • 10
    • 54049130421 scopus 로고    scopus 로고
    • HOLLING, C. S.(1965) The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can., 45, 3-60.
    • HOLLING, C. S.(1965) The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can., 45, 3-60.
  • 11
    • 0029325665 scopus 로고
    • Global stability for a class of predator-prey systems
    • HSU, S. B. & HUANG, T. W.(1995) Global stability for a class of predator-prey systems. SIAM J. Appl. Math., 55, 763-783.
    • (1995) SIAM J. Appl. Math , vol.55 , pp. 763-783
    • HSU, S.B.1    HUANG, T.W.2
  • 12
    • 0001120901 scopus 로고
    • The properties of a stochastic model for the predator-prey type of interaction between two species
    • LESLIE, P. H. & GOWER, J. C.(1960) The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika, 47, 219 234.
    • (1960) Biometrika , vol.47 , pp. 219-234
    • LESLIE, P.H.1    GOWER, J.C.2
  • 13
    • 0002542873 scopus 로고
    • Large amplitude stationary solutions to a chemotaxis systems
    • LIN, C. S., NI, W. M. & TAKAGI, I.(1988) Large amplitude stationary solutions to a chemotaxis systems. J. Differ. Equ., 72, 1-27.
    • (1988) J. Differ. Equ , vol.72 , pp. 1-27
    • LIN, C.S.1    NI, W.M.2    TAKAGI, I.3
  • 14
    • 0030579038 scopus 로고    scopus 로고
    • LOU, Y. & NI, W. M.(1996) Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ., 131, 79-131.MAY, R. M. (1974) Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.
    • LOU, Y. & NI, W. M.(1996) Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ., 131, 79-131.MAY, R. M. (1974) Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.
  • 15
    • 54049083805 scopus 로고    scopus 로고
    • MURRAY, J. D.(1993) Mathematical Biology, Biomathematics, 13, 2nd edn. Berlin: Springer.
    • MURRAY, J. D.(1993) Mathematical Biology, Biomathematics, vol. 13, 2nd edn. Berlin: Springer.
  • 16
    • 84966242258 scopus 로고    scopus 로고
    • p = 0 on the compact manifolds. Trans. Am. Math. Soc., 331, 503-527.
    • p = 0 on the compact manifolds. Trans. Am. Math. Soc., 331, 503-527.
  • 17
    • 14644406942 scopus 로고    scopus 로고
    • Positive steady-states ofthe Holling-Tanner prey-predator model with diffusion
    • PENG, R. & WANG, M. X.(2005) Positive steady-states ofthe Holling-Tanner prey-predator model with diffusion. Proc. R. Soc. Edinb. A, 135, 149-164.
    • (2005) Proc. R. Soc. Edinb. A , vol.135 , pp. 149-164
    • PENG, R.1    WANG, M.X.2
  • 19
    • 0342298388 scopus 로고    scopus 로고
    • Dynamics of a predator-prey model
    • SAEZ, E. & GONZALEZ -OLIVARES, E.(1999) Dynamics of a predator-prey model. SIAM J. Appl. Math., 59, 1867-1878.
    • (1999) SIAM J. Appl. Math , vol.59 , pp. 1867-1878
    • SAEZ, E.1    GONZALEZ2    OLIVARES, E.3
  • 20
    • 54049091524 scopus 로고    scopus 로고
    • TANNER, J. T.(1975) The stability and the intrinsic growth rates of prey and predator populations. Ecology, 56, 855-867.
    • TANNER, J. T.(1975) The stability and the intrinsic growth rates of prey and predator populations. Ecology, 56, 855-867.
  • 21
    • 38249030117 scopus 로고
    • Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies
    • WOLLKIND, D. J., COLLINGS, J. B. & LOGAN, J. A.(1988) Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies. Bull. Math. Biol., 50, 379-409.
    • (1988) Bull. Math. Biol , vol.50 , pp. 379-409
    • WOLLKIND, D.J.1    COLLINGS, J.B.2    LOGAN, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.