메뉴 건너뛰기




Volumn 69, Issue 11, 2008, Pages 3811-3820

Triple positive solutions of m-point BVPs for p-Laplacian dynamic equations on time scales

Author keywords

Boundary value problem; Fixed point theorem; p Laplacian; Positive solutions; Time scales

Indexed keywords

LAPLACE TRANSFORMS;

EID: 53949089181     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2007.10.018     Document Type: Article
Times cited : (29)

References (17)
  • 1
    • 0003185303 scopus 로고    scopus 로고
    • Two positive fixed point of nonlinear operators on ordered Banach spaces
    • Avery R.I., and Henderson J. Two positive fixed point of nonlinear operators on ordered Banach spaces. Comm. Appl. Nonlinear Anal. 8 (2001) 27-36
    • (2001) Comm. Appl. Nonlinear Anal. , vol.8 , pp. 27-36
    • Avery, R.I.1    Henderson, J.2
  • 2
    • 0002418596 scopus 로고    scopus 로고
    • A generalization of the Leggett-Williams fixed point theorem
    • Avery R.I. A generalization of the Leggett-Williams fixed point theorem. MSR Hot-Line 2 (1998) 9-14
    • (1998) MSR Hot-Line , vol.2 , pp. 9-14
    • Avery, R.I.1
  • 6
    • 19644362041 scopus 로고    scopus 로고
    • Double positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales
    • He Z. Double positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales. J. Comput. Appl. Math. 182 (2005) 304-315
    • (2005) J. Comput. Appl. Math. , vol.182 , pp. 304-315
    • He, Z.1
  • 7
    • 0000394603 scopus 로고
    • Multiple positive fixed points of nonlinear operators on ordered Banach spaces
    • Leggett R., and Williams L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979) 673-688
    • (1979) Indiana Univ. Math. J. , vol.28 , pp. 673-688
    • Leggett, R.1    Williams, L.2
  • 8
    • 25144458402 scopus 로고    scopus 로고
    • Existence of three positive solutions for boundary value problems with p-Laplacian
    • Li J., and Shen J. Existence of three positive solutions for boundary value problems with p-Laplacian. J. Math. Anal. Appl. 311 (2005) 457-465
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 457-465
    • Li, J.1    Shen, J.2
  • 9
    • 33645077081 scopus 로고    scopus 로고
    • Eigenvalue problems for second-order nonlinear dynamic equations on time scales
    • Li W.T., and Liu X.L. Eigenvalue problems for second-order nonlinear dynamic equations on time scales. J. Math. Anal. Appl. 318 (2006) 578-592
    • (2006) J. Math. Anal. Appl. , vol.318 , pp. 578-592
    • Li, W.T.1    Liu, X.L.2
  • 10
    • 0037280836 scopus 로고    scopus 로고
    • Multiple positive solutions to a three-point boundary value problems with p-Laplacian
    • Liu Y., and Ge W. Multiple positive solutions to a three-point boundary value problems with p-Laplacian. J. Math. Anal. Appl. 277 (2003) 293-302
    • (2003) J. Math. Anal. Appl. , vol.277 , pp. 293-302
    • Liu, Y.1    Ge, W.2
  • 11
    • 0038405055 scopus 로고    scopus 로고
    • Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian
    • Liu Y., and Ge W. Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian. J. Math. Anal. Appl. 278 (2003) 551-561
    • (2003) J. Math. Anal. Appl. , vol.278 , pp. 551-561
    • Liu, Y.1    Ge, W.2
  • 12
    • 18144393074 scopus 로고    scopus 로고
    • Positive solutions for singular p-Laplacian equations with sign changing nonlinearities using inequality theory
    • Lü H., O'Regan D., and Agarwal R.P. Positive solutions for singular p-Laplacian equations with sign changing nonlinearities using inequality theory. Appl. Math. Comput. 165 (2005) 587-597
    • (2005) Appl. Math. Comput. , vol.165 , pp. 587-597
    • Lü, H.1    O'Regan, D.2    Agarwal, R.P.3
  • 13
    • 0001588110 scopus 로고    scopus 로고
    • A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian
    • Lü H., and Zhang C. A note on singular nonlinear boundary value problems for the one-dimensional p-Laplacian. Appl. Math. Lett. 14 (2001) 189-194
    • (2001) Appl. Math. Lett. , vol.14 , pp. 189-194
    • Lü, H.1    Zhang, C.2
  • 14
    • 28844434113 scopus 로고    scopus 로고
    • Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation
    • Sun J.P. Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation. Nonlinear Anal. 64 (2006) 629-636
    • (2006) Nonlinear Anal. , vol.64 , pp. 629-636
    • Sun, J.P.1
  • 15
    • 34547675918 scopus 로고    scopus 로고
    • Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales
    • Sun H.R., and Li W.T. Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales. J. Differential Equations 240 (2007) 217-248
    • (2007) J. Differential Equations , vol.240 , pp. 217-248
    • Sun, H.R.1    Li, W.T.2
  • 16
    • 4744374102 scopus 로고    scopus 로고
    • Positive solutions of second-order half-linear dynamic equations on time scales
    • Sun H.R., and Li W.T. Positive solutions of second-order half-linear dynamic equations on time scales. Appl. Math. Comput. 158 (2004) 331-344
    • (2004) Appl. Math. Comput. , vol.158 , pp. 331-344
    • Sun, H.R.1    Li, W.T.2
  • 17
    • 39749086853 scopus 로고    scopus 로고
    • Triple positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales
    • Wang D.B. Triple positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales. Nonlinear Anal. 68 8 (2008) 2172-2180
    • (2008) Nonlinear Anal. , vol.68 , Issue.8 , pp. 2172-2180
    • Wang, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.