-
4
-
-
0034600286
-
-
b) F. B. Mallory, C. W. Mallory, K. E. Butler, M. B. Lewis, A. Q. Xia, E. D. Luzik, Jr., L. E. Fredenburgh, M. M. Ramanjulu, Q. N. Van, M. M. Francl, D. A. Freed, C. C. Wray, C. Hann, M. Nerz-Stormes, P. J. Carroll, L. E. Chirlian, J. Am. Chem. Soc. 2000, 122, 4108-4116.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 4108-4116
-
-
Mallory, F.B.1
Mallory, C.W.2
Butler, K.E.3
Lewis, M.B.4
Xia, A.Q.5
Luzik Jr., E.D.6
Fredenburgh, L.E.7
Ramanjulu, M.M.8
Van, Q.N.9
Francl, M.M.10
Freed, D.A.11
Wray, C.C.12
Hann, C.13
Nerz-Stormes, M.14
Carroll, P.J.15
Chirlian, L.E.16
-
5
-
-
0000584523
-
-
T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev. 1999, 99, 293-352;
-
(1999)
Chem. Rev
, vol.99
, pp. 293-352
-
-
Helgaker, T.1
Jaszunski, M.2
Ruud, K.3
-
7
-
-
0003107872
-
-
M. Bienati, C. Adamo, V. Barone, Chem. Phys. Lett. 1999, 311, 69-76;
-
(1999)
Chem. Phys. Lett
, vol.311
, pp. 69-76
-
-
Bienati, M.1
Adamo, C.2
Barone, V.3
-
8
-
-
35448947580
-
-
Ed, G. A. Webb, Academic Press, New York
-
R. H. Contreras, J. E. Peralta, C. G. Giribet, M. C. Ruiz de Azua, J. C. Facelli in Annual Reports on NMR Spectroscopy, Vol. 41 (Ed.: G. A. Webb), Academic Press, New York, 2000, pp. 55-184.
-
(2000)
Annual Reports on NMR Spectroscopy
, vol.41
, pp. 55-184
-
-
Contreras, R.H.1
Peralta, J.E.2
Giribet, C.G.3
Ruiz de Azua, M.C.4
Facelli, J.C.5
-
9
-
-
0004060681
-
-
Eds, T. M. Klapötke. M. Broschag, Wiley, New York
-
77Se NMR Chemical Shifts, (Eds.: T. M. Klapötke. M. Broschag), Wiley, New York, 1996.
-
(1996)
77Se NMR Chemical Shifts
-
-
-
10
-
-
53849099472
-
-
Mallory and co-workers demonstrated that the value of J(F.F) becomes exponentially smaller as the nonbonded F-F distance increases. The values are controlled by spin-orbit interactions. See also ref. [2b].
-
Mallory and co-workers demonstrated that the value of J(F.F) becomes exponentially smaller as the nonbonded F-F distance increases. The values are controlled by spin-orbit interactions. See also ref. [2b].
-
-
-
-
11
-
-
3042640517
-
-
Eds, M. Kaupp, M. Bühl, V. G. Malkin, Wiley-VCH, Weinheim, Chapter 7
-
T Helgaker, M. Pecul in Calculations of NMR and EPR Parameters: Theory and Applications, (Eds.: M. Kaupp, M. Bühl, V. G. Malkin), Wiley-VCH, Weinheim. 2004, Chapter 7.
-
(2004)
Calculations of NMR and EPR Parameters: Theory and Applications
-
-
Helgaker, T.1
Pecul, M.2
-
12
-
-
0000744689
-
-
J. Meinwald. D. Dauplaise, F. Wudl, J. J. Häuser, J. Am. Chem. Soc. 1977, 99, 255-257;
-
(1977)
J. Am. Chem. Soc
, vol.99
, pp. 255-257
-
-
Meinwald, J.1
Dauplaise, D.2
Wudl, F.3
Häuser, J.J.4
-
13
-
-
0010876942
-
-
J. Meinwald, D. Dauplaise, J. Clardy, J. Am. Chem. Soc. 1977, 99, 7743-7744;
-
(1977)
J. Am. Chem. Soc
, vol.99
, pp. 7743-7744
-
-
Meinwald, J.1
Dauplaise, D.2
Clardy, J.3
-
14
-
-
0010816428
-
-
D. Dauplaise, J. Meinwald, J. C. Scoll, H. Temkin, J. Clardy, Ann. N. Y. Acad. Sci. 1978, 313, 382-394;
-
(1978)
Ann. N. Y. Acad. Sci
, vol.313
, pp. 382-394
-
-
Dauplaise, D.1
Meinwald, J.2
Scoll, J.C.3
Temkin, H.4
Clardy, J.5
-
16
-
-
0010880093
-
-
Y. Aso, K. Yui, T. Miyoshi, T. Otsubo, F. Ogura, J. Tanaka, Bull. Chem. Soc. Jpn. 1988, 61, 2013-2018.
-
(1988)
Bull. Chem. Soc. Jpn
, vol.61
, pp. 2013-2018
-
-
Aso, Y.1
Yui, K.2
Miyoshi, T.3
Otsubo, T.4
Ogura, F.5
Tanaka, J.6
-
17
-
-
53849092867
-
-
1J(Se,Se) = 330.8 Hz was obtained.
-
1J(Se,Se) = 330.8 Hz was obtained.
-
-
-
-
18
-
-
84989092824
-
-
3J(Se,Se) for 5-gauche and 5-anti have not been reported yet.
-
3J(Se,Se) for 5-gauche and 5-anti have not been reported yet.
-
-
-
-
19
-
-
0000842768
-
-
a) I. Johannsen, L. Henriksen, H. Eggert, J. Org. Chem. 1986, 51, 1657-1663;
-
(1986)
J. Org. Chem
, vol.51
, pp. 1657-1663
-
-
Johannsen, I.1
Henriksen, L.2
Eggert, H.3
-
22
-
-
0031768557
-
-
W. Nakanishi, S. Hayashi, S. Toyota, J. Org. Chem. 1998, 63, 8790-8800;
-
(1998)
J. Org. Chem
, vol.63
, pp. 8790-8800
-
-
Nakanishi, W.1
Hayashi, S.2
Toyota, S.3
-
24
-
-
53849090456
-
-
See the Supporting Information
-
See the Supporting Information.
-
-
-
-
25
-
-
53849112470
-
-
ADF 2005.01 SCM. Theoretical Chemistry. E. J. Baerends, J. Autschbach, A. Bérces, J. A. Berger, F. M. Bickelhaupt, C. Bo, P. L. de Boeij, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, E. S. Kadantsev, G. van Kessel, R. Klooster, F. Koolstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Romaniello, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Vrije Universiteit, Amsterdam Netherlands, 2005
-
ADF 2005.01 SCM. Theoretical Chemistry. E. J. Baerends, J. Autschbach, A. Bérces, J. A. Berger, F. M. Bickelhaupt, C. Bo, P. L. de Boeij, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, E. S. Kadantsev, G. van Kessel, R. Klooster, F. Koolstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Romaniello, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Vrije Universiteit, Amsterdam (Netherlands), 2005.
-
-
-
-
26
-
-
0037833475
-
-
For the Slater-type orbitais, see a
-
For the Slater-type orbitais, see a) E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156;
-
(2003)
J. Comput. Chem
, vol.24
, pp. 1142-1156
-
-
van Lenthe, E.1
Baerends, E.J.2
-
27
-
-
2542503302
-
-
b) D. P. Chong, E. Lenthe, S. J. A. van Gisbergen, E. J. Baerends, J. Comput. Chem. 2004, 25, 1030-1036.
-
(2004)
J. Comput. Chem
, vol.25
, pp. 1030-1036
-
-
Chong, D.P.1
Lenthe, E.2
van Gisbergen, S.J.A.3
Baerends, E.J.4
-
28
-
-
53849136424
-
-
Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pelersson, H. Nakalsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Kiene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Volh, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanaya
-
Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pelersson, H. Nakalsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Kiene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Volh, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian, Inc., Wallingford CT, 2004.
-
-
-
-
30
-
-
84986869935
-
-
b) G. Llabres, M. Baiwir, J.-L. Piette, L. Christiaens, Org. Magn. Reson. 1981, 15, 152-154.
-
(1981)
Org. Magn. Reson
, vol.15
, pp. 152-154
-
-
Llabres, G.1
Baiwir, M.2
Piette, J.-L.3
Christiaens, L.4
-
31
-
-
84934460107
-
-
For the 6-311G(3df) basis sets, see: a) R. C. Binning, Jr., L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206-1216;
-
For the 6-311G(3df) basis sets, see: a) R. C. Binning, Jr., L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206-1216;
-
-
-
-
32
-
-
36448999570
-
-
b) L. A. Curliss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning, Jr., L. Radom, J. Chem. Phys. 1995, 103, 6104-6113;
-
(1995)
J. Chem. Phys
, vol.103
, pp. 6104-6113
-
-
Curliss, L.A.1
McGrath, M.P.2
Blaudeau, J.-P.3
Davis, N.E.4
Binning Jr., R.C.5
Radom, L.6
-
34
-
-
84986468715
-
-
for the diffuse functions, and, see
-
for the diffuse functions (+ and + +), see T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 1983, 4, 294-301.
-
(1983)
J. Comput. Chem
, vol.4
, pp. 294-301
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, P.V.R.4
-
37
-
-
0345491105
-
-
b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789;
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
38
-
-
0038596731
-
-
B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206.
-
(1989)
Chem. Phys. Lett
, vol.157
, pp. 200-206
-
-
Miehlich, B.1
Savin, A.2
Stoll, H.3
Preuss, H.4
-
39
-
-
33644654429
-
-
The DFT level here was employed to optimize the structures because it was supplied by the ADF program that we used. However, the DFT level should be carefully employed for systems that contain nonbonded interactions. DFT could not evaluate the nonbonded interactions correctly because most functional are not treated by the exchange-correlation functional. For examples, see a C. Bleiholder. D. B. Werz, H. Köppel, R. Gleiter, J. Am. Chem. Soc. 2006, 128, 2666-2674;
-
The DFT level here was employed to optimize the structures because it was supplied by the ADF program that we used. However, the DFT level should be carefully employed for systems that contain nonbonded interactions. DFT could not evaluate the nonbonded interactions correctly because most functional are not treated by the exchange-correlation functional. For examples, see a) C. Bleiholder. D. B. Werz, H. Köppel, R. Gleiter, J. Am. Chem. Soc. 2006, 128, 2666-2674;
-
-
-
-
40
-
-
34047154491
-
-
b) C. Bleiholder, R. Gleiter, D. B. Werz, H. Köppel, Inorg. Chem. 2007, 46, 2249-2260.
-
(2007)
Inorg. Chem
, vol.46
, pp. 2249-2260
-
-
Bleiholder, C.1
Gleiter, R.2
Werz, D.B.3
Köppel, H.4
-
41
-
-
53849132555
-
-
Values of J were also satisfactorily calculated by using the Gaussian 03 program in most cases.
-
Values of J were also satisfactorily calculated by using the Gaussian 03 program in most cases.
-
-
-
-
42
-
-
53849099471
-
-
TL(Se,Se) were also calculated for structures of 4a-gem, 4a-cis, and 4a-trans with appropriate substituents. The values were 88.5, 15.1, and -41.8 Hz for 4a-gem, 4a-cis, and 4a-trans, respectively, although these optimized structures might not be the global minima. Details of this will be discussed elsewhere.
-
TL(Se,Se) were also calculated for structures of 4a-gem, 4a-cis, and 4a-trans with appropriate substituents. The values were 88.5, 15.1, and -41.8 Hz for 4a-gem, 4a-cis, and 4a-trans, respectively, although these optimized structures might not be the global minima. Details of this will be discussed elsewhere.
-
-
-
-
43
-
-
0037880444
-
-
E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610;
-
a) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610;
-
-
-
-
44
-
-
2942550208
-
-
b) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783-9792;
-
(1994)
J. Chem. Phys
, vol.101
, pp. 9783-9792
-
-
van Lenthe, E.1
Baerends, E.J.2
Snijders, J.G.3
-
45
-
-
0000458921
-
-
c) E. van Lenthe, A. Ehlers, E. J. Baerends, J. Chem. Phys. 1999, 110, 8943-8953.
-
(1999)
J. Chem. Phys
, vol.110
, pp. 8943-8953
-
-
van Lenthe, E.1
Ehlers, A.2
Baerends, E.J.3
-
46
-
-
53849099829
-
-
The value of 1J(Se,Se) that was calculated for 2a at the nonrelativistic level was smaller than that obtained with the scalar ZORA relativistic; formulation, whereas the value of 4J(Se,Se) for 12(AA) that was calculated at the nonrelativistic level was several magnitudes larger than that obtained with the scalar ZORA relativistic formulation. The values calculated at the nonrelativistic level seem to be closer to the observed values than those obtained with the scalar ZORA relativistic formulation in our calculation system. Therefore, it would be reasonable in this case to discuss the values of V(Se,Se) calculated at the nonrelativistic level
-
4J(Se,Se) for 12(AA) that was calculated at the nonrelativistic level was several magnitudes larger than that obtained with the scalar ZORA relativistic formulation. The values calculated at the nonrelativistic level seem to be closer to the observed values than those obtained with the scalar ZORA relativistic formulation in our calculation system. Therefore, it would be reasonable in this case to discuss the values of V(Se,Se) calculated at the nonrelativistic level.
-
-
-
-
49
-
-
53849123145
-
-
2 = 0.9999).
-
2 = 0.9999).
-
-
-
-
50
-
-
53849118287
-
-
Some vacant MOs (Ψa, such as those at Ψ395, Ψ396, Ψ435 and Ψ436 also contribute to 4JPSO(Se,Se) in 2a. However, the contributions from these vacant MOs are cancelled out by the addition of contributions from other nearby orbitais. For example, the magnitude of the contributions from Ψ301-Ψ438 to 4JPSO(Se,Se) amounts to less than 0.3 Hz, of which Ψ438 has the highest energy
-
438 has the highest energy.
-
-
-
-
51
-
-
53849083615
-
-
4J(Se,Se).
-
4J(Se,Se).
-
-
-
-
52
-
-
53849130816
-
-
Although 1,8-bis(methylselanyl)naphthalene and 1-(methylselanyl)8, phenylselanyl)naphthalene were observed as the CC conformer in the solid state, AB conformers must also be present and contribute in solution, which has an effect on 4JSe,Se
-
4J(Se,Se).
-
-
-
-
54
-
-
53849119682
-
-
Me atoms with the naphthyl plane moving in the opposite direction.
-
Me atoms with the naphthyl plane moving in the opposite direction.
-
-
-
-
55
-
-
53849122821
-
-
Although not shown. Ψ72 (HOMO) and the Ψ72-Ψ82 transition mainly contribute to 4JFC(Se,Se) in 6(CC) and 6(AB, Similarly, the contributions from Ψ84 (HOMO) and the Ψ84- Ψ92 transition explain the values of 4J FC(Se,Se) in 8AA
-
FC(Se,Se) in 8(AA).
-
-
-
-
56
-
-
0020766419
-
-
2J(Se,C) is well established: see: a) W. Nakanishi, Y. Ikeda, Bull. Chem. Soc. Jpn. 1983, 56, 1661-1664;
-
2J(Se,C) is well established: see: a) W. Nakanishi, Y. Ikeda, Bull. Chem. Soc. Jpn. 1983, 56, 1661-1664;
-
-
-
-
58
-
-
0000407140
-
-
W. Nakanishi, S. Hayashi, T. Uehara, J. Phys. Chem. A 1999, 103, 9906-9912.
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 9906-9912
-
-
Nakanishi, W.1
Hayashi, S.2
Uehara, T.3
|