메뉴 건너뛰기




Volumn 14, Issue 18, 2008, Pages 5645-5655

Torsional angular dependence of1J(Se,Se) and fermi contact control of4J(Se,Se): Analysis ofnJ(Se,Se) (n = 1-4) based on molecular orbital theory

Author keywords

Ab initio calculations; Coupling constants; NMR spectroscopy; Selenium

Indexed keywords

AB INITIO CALCULATIONS; COUPLING CONSTANTS; NMR SPECTROSCOPY; SELENIUM;

EID: 53849141523     PISSN: 09476539     EISSN: 15213765     Source Type: Journal    
DOI: 10.1002/chem.200701532     Document Type: Article
Times cited : (18)

References (58)
  • 9
    • 0004060681 scopus 로고    scopus 로고
    • Eds, T. M. Klapötke. M. Broschag, Wiley, New York
    • 77Se NMR Chemical Shifts, (Eds.: T. M. Klapötke. M. Broschag), Wiley, New York, 1996.
    • (1996) 77Se NMR Chemical Shifts
  • 10
    • 53849099472 scopus 로고    scopus 로고
    • Mallory and co-workers demonstrated that the value of J(F.F) becomes exponentially smaller as the nonbonded F-F distance increases. The values are controlled by spin-orbit interactions. See also ref. [2b].
    • Mallory and co-workers demonstrated that the value of J(F.F) becomes exponentially smaller as the nonbonded F-F distance increases. The values are controlled by spin-orbit interactions. See also ref. [2b].
  • 17
    • 53849092867 scopus 로고    scopus 로고
    • 1J(Se,Se) = 330.8 Hz was obtained.
    • 1J(Se,Se) = 330.8 Hz was obtained.
  • 18
    • 84989092824 scopus 로고    scopus 로고
    • 3J(Se,Se) for 5-gauche and 5-anti have not been reported yet.
    • 3J(Se,Se) for 5-gauche and 5-anti have not been reported yet.
  • 24
    • 53849090456 scopus 로고    scopus 로고
    • See the Supporting Information
    • See the Supporting Information.
  • 25
    • 53849112470 scopus 로고    scopus 로고
    • ADF 2005.01 SCM. Theoretical Chemistry. E. J. Baerends, J. Autschbach, A. Bérces, J. A. Berger, F. M. Bickelhaupt, C. Bo, P. L. de Boeij, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, E. S. Kadantsev, G. van Kessel, R. Klooster, F. Koolstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Romaniello, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Vrije Universiteit, Amsterdam Netherlands, 2005
    • ADF 2005.01 SCM. Theoretical Chemistry. E. J. Baerends, J. Autschbach, A. Bérces, J. A. Berger, F. M. Bickelhaupt, C. Bo, P. L. de Boeij, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Gruning, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, E. S. Kadantsev, G. van Kessel, R. Klooster, F. Koolstra, E. van Lenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Romaniello, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, and T. Ziegler, Vrije Universiteit, Amsterdam (Netherlands), 2005.
  • 26
    • 0037833475 scopus 로고    scopus 로고
    • For the Slater-type orbitais, see a
    • For the Slater-type orbitais, see a) E. van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156;
    • (2003) J. Comput. Chem , vol.24 , pp. 1142-1156
    • van Lenthe, E.1    Baerends, E.J.2
  • 28
    • 53849136424 scopus 로고    scopus 로고
    • Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pelersson, H. Nakalsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Kiene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Volh, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanaya
    • Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pelersson, H. Nakalsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Kiene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Volh, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian, Inc., Wallingford CT, 2004.
  • 31
    • 84934460107 scopus 로고    scopus 로고
    • For the 6-311G(3df) basis sets, see: a) R. C. Binning, Jr., L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206-1216;
    • For the 6-311G(3df) basis sets, see: a) R. C. Binning, Jr., L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206-1216;
  • 39
    • 33644654429 scopus 로고    scopus 로고
    • The DFT level here was employed to optimize the structures because it was supplied by the ADF program that we used. However, the DFT level should be carefully employed for systems that contain nonbonded interactions. DFT could not evaluate the nonbonded interactions correctly because most functional are not treated by the exchange-correlation functional. For examples, see a C. Bleiholder. D. B. Werz, H. Köppel, R. Gleiter, J. Am. Chem. Soc. 2006, 128, 2666-2674;
    • The DFT level here was employed to optimize the structures because it was supplied by the ADF program that we used. However, the DFT level should be carefully employed for systems that contain nonbonded interactions. DFT could not evaluate the nonbonded interactions correctly because most functional are not treated by the exchange-correlation functional. For examples, see a) C. Bleiholder. D. B. Werz, H. Köppel, R. Gleiter, J. Am. Chem. Soc. 2006, 128, 2666-2674;
  • 41
    • 53849132555 scopus 로고    scopus 로고
    • Values of J were also satisfactorily calculated by using the Gaussian 03 program in most cases.
    • Values of J were also satisfactorily calculated by using the Gaussian 03 program in most cases.
  • 42
    • 53849099471 scopus 로고    scopus 로고
    • TL(Se,Se) were also calculated for structures of 4a-gem, 4a-cis, and 4a-trans with appropriate substituents. The values were 88.5, 15.1, and -41.8 Hz for 4a-gem, 4a-cis, and 4a-trans, respectively, although these optimized structures might not be the global minima. Details of this will be discussed elsewhere.
    • TL(Se,Se) were also calculated for structures of 4a-gem, 4a-cis, and 4a-trans with appropriate substituents. The values were 88.5, 15.1, and -41.8 Hz for 4a-gem, 4a-cis, and 4a-trans, respectively, although these optimized structures might not be the global minima. Details of this will be discussed elsewhere.
  • 43
    • 0037880444 scopus 로고    scopus 로고
    • E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610;
    • a) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597-4610;
  • 46
    • 53849099829 scopus 로고    scopus 로고
    • The value of 1J(Se,Se) that was calculated for 2a at the nonrelativistic level was smaller than that obtained with the scalar ZORA relativistic; formulation, whereas the value of 4J(Se,Se) for 12(AA) that was calculated at the nonrelativistic level was several magnitudes larger than that obtained with the scalar ZORA relativistic formulation. The values calculated at the nonrelativistic level seem to be closer to the observed values than those obtained with the scalar ZORA relativistic formulation in our calculation system. Therefore, it would be reasonable in this case to discuss the values of V(Se,Se) calculated at the nonrelativistic level
    • 4J(Se,Se) for 12(AA) that was calculated at the nonrelativistic level was several magnitudes larger than that obtained with the scalar ZORA relativistic formulation. The values calculated at the nonrelativistic level seem to be closer to the observed values than those obtained with the scalar ZORA relativistic formulation in our calculation system. Therefore, it would be reasonable in this case to discuss the values of V(Se,Se) calculated at the nonrelativistic level.
  • 49
    • 53849123145 scopus 로고    scopus 로고
    • 2 = 0.9999).
    • 2 = 0.9999).
  • 50
    • 53849118287 scopus 로고    scopus 로고
    • Some vacant MOs (Ψa, such as those at Ψ395, Ψ396, Ψ435 and Ψ436 also contribute to 4JPSO(Se,Se) in 2a. However, the contributions from these vacant MOs are cancelled out by the addition of contributions from other nearby orbitais. For example, the magnitude of the contributions from Ψ301-Ψ438 to 4JPSO(Se,Se) amounts to less than 0.3 Hz, of which Ψ438 has the highest energy
    • 438 has the highest energy.
  • 51
    • 53849083615 scopus 로고    scopus 로고
    • 4J(Se,Se).
    • 4J(Se,Se).
  • 52
    • 53849130816 scopus 로고    scopus 로고
    • Although 1,8-bis(methylselanyl)naphthalene and 1-(methylselanyl)8, phenylselanyl)naphthalene were observed as the CC conformer in the solid state, AB conformers must also be present and contribute in solution, which has an effect on 4JSe,Se
    • 4J(Se,Se).
  • 54
    • 53849119682 scopus 로고    scopus 로고
    • Me atoms with the naphthyl plane moving in the opposite direction.
    • Me atoms with the naphthyl plane moving in the opposite direction.
  • 55
    • 53849122821 scopus 로고    scopus 로고
    • Although not shown. Ψ72 (HOMO) and the Ψ72-Ψ82 transition mainly contribute to 4JFC(Se,Se) in 6(CC) and 6(AB, Similarly, the contributions from Ψ84 (HOMO) and the Ψ84- Ψ92 transition explain the values of 4J FC(Se,Se) in 8AA
    • FC(Se,Se) in 8(AA).
  • 56
    • 0020766419 scopus 로고    scopus 로고
    • 2J(Se,C) is well established: see: a) W. Nakanishi, Y. Ikeda, Bull. Chem. Soc. Jpn. 1983, 56, 1661-1664;
    • 2J(Se,C) is well established: see: a) W. Nakanishi, Y. Ikeda, Bull. Chem. Soc. Jpn. 1983, 56, 1661-1664;


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.