메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 72-80

An improved data mining approach using predictive itemsets

Author keywords

Association rule; Data dependency; Data mining; Predicting minimum support; Predictive itemset

Indexed keywords

BOOLEAN FUNCTIONS; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; MINING;

EID: 53849131698     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.09.009     Document Type: Article
Times cited : (11)

References (23)
  • 2
    • 0027621699 scopus 로고    scopus 로고
    • Agrawal, R., Imielinksi, T., & Swami, A. (1993b). Mining association rules between sets of items in large dataset. In The ACM SIGMOD conference (pp. 207-216). Washington DC, USA.
    • Agrawal, R., Imielinksi, T., & Swami, A. (1993b). Mining association rules between sets of items in large dataset. In The ACM SIGMOD conference (pp. 207-216). Washington DC, USA.
  • 3
    • 53849129076 scopus 로고    scopus 로고
    • Agrawal, R., & Srikant, R. (1994). Fast algorithm for mining association rules. In The international conference on very large data bases (pp. 487-499).
    • Agrawal, R., & Srikant, R. (1994). Fast algorithm for mining association rules. In The international conference on very large data bases (pp. 487-499).
  • 4
    • 0029212693 scopus 로고    scopus 로고
    • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In The 11th IEEE international conference on data engineering (pp. 3-14).
    • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In The 11th IEEE international conference on data engineering (pp. 3-14).
  • 5
    • 53849105973 scopus 로고    scopus 로고
    • Agrawal, R., Srikant, R., & Vu, Q. (1997). Mining association rules with item constraints. In The third international conference on knowledge discovery in datasets and data mining (pp. 67-73). Newport Beach, California.
    • Agrawal, R., Srikant, R., & Vu, Q. (1997). Mining association rules with item constraints. In The third international conference on knowledge discovery in datasets and data mining (pp. 67-73). Newport Beach, California.
  • 7
    • 0034832877 scopus 로고    scopus 로고
    • Bykowski, A., & Rigotti, C. (2001). A condensed representation to find frequent patterns. In The 12th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. Santa Barbara, California, USA.
    • Bykowski, A., & Rigotti, C. (2001). A condensed representation to find frequent patterns. In The 12th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. Santa Barbara, California, USA.
  • 9
    • 84964434713 scopus 로고    scopus 로고
    • Denwattana, N., & Getta, J. R. (2001). A parameterised algorithm for mining association rules. In The 12th Australasian Dataset conference (pp. 45-51).
    • Denwattana, N., & Getta, J. R. (2001). A parameterised algorithm for mining association rules. In The 12th Australasian Dataset conference (pp. 45-51).
  • 10
    • 84974698287 scopus 로고    scopus 로고
    • Ezeife, C. I. (2002). Mining Incremental association rules with generalized FP-tree. In The 15th conference of the Canadian society for computational studies of intelligence on advances in artificial intelligence (pp. 147-160).
    • Ezeife, C. I. (2002). Mining Incremental association rules with generalized FP-tree. In The 15th conference of the Canadian society for computational studies of intelligence on advances in artificial intelligence (pp. 147-160).
  • 11
    • 53849131535 scopus 로고    scopus 로고
    • Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large dataset. In The 21st international conference on very large data bases (pp. 420-431). Zurich, Switzerland.
    • Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large dataset. In The 21st international conference on very large data bases (pp. 420-431). Zurich, Switzerland.
  • 12
    • 0039253846 scopus 로고    scopus 로고
    • Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In The 2000 ACM SIGMOD international conference on management of data (pp. 1-12).
    • Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In The 2000 ACM SIGMOD international conference on management of data (pp. 1-12).
  • 13
    • 53849100866 scopus 로고    scopus 로고
    • IBM, The Intelligent Information Systems Research (Quest) Group, http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html.
    • IBM, The Intelligent Information Systems Research (Quest) Group, http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html.
  • 14
    • 35048834898 scopus 로고    scopus 로고
    • Koh, J. L., & Shieh, S. F. (2004). An efficient approach for maintaining association rules based on adjusting FP-tree structures. In The 9th international conference on database systems for advanced applications (pp. 417-424).
    • Koh, J. L., & Shieh, S. F. (2004). An efficient approach for maintaining association rules based on adjusting FP-tree structures. In The 9th international conference on database systems for advanced applications (pp. 417-424).
  • 15
    • 53849108651 scopus 로고    scopus 로고
    • Mannila, H., Toivonen, H., & Verkamo, A. I. (1994). Efficient algorithm for discovering association rules. The AAAI Workshop on Knowledge Discovery in Datasets (pp. 181-192).
    • Mannila, H., Toivonen, H., & Verkamo, A. I. (1994). Efficient algorithm for discovering association rules. The AAAI Workshop on Knowledge Discovery in Datasets (pp. 181-192).
  • 16
    • 0031220368 scopus 로고    scopus 로고
    • Using a hash-based method with transaction trimming for mining association rules
    • Park J.S., Chen M.S., and Yu P.S. Using a hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data Engineering 9 5 (1997) 812-825
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , Issue.5 , pp. 812-825
    • Park, J.S.1    Chen, M.S.2    Yu, P.S.3
  • 17
    • 53849101680 scopus 로고    scopus 로고
    • Pei, J., Han, J., & Mao, R. (2000). CLOSET: an efficient algorithm for mining frequent closed itemsets. The 2000 ACM SIGMOD DMKD'00. Dallas, TX, USA.
    • Pei, J., Han, J., & Mao, R. (2000). CLOSET: an efficient algorithm for mining frequent closed itemsets. The 2000 ACM SIGMOD DMKD'00. Dallas, TX, USA.
  • 18
    • 6344252813 scopus 로고    scopus 로고
    • Qiu, Y., Lan, Y. J., & Xie, Q. S. (2004). An improved algorithm of mining from FP-tree. In The third international conference on machine learning and cybernetics (pp. 26-29).
    • Qiu, Y., Lan, Y. J., & Xie, Q. S. (2004). An improved algorithm of mining from FP-tree. In The third international conference on machine learning and cybernetics (pp. 26-29).
  • 19
    • 53849087349 scopus 로고    scopus 로고
    • Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In The 21st international conference on very large data bases (pp. 407-419), Zurich, Switzerland.
    • Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In The 21st international conference on very large data bases (pp. 407-419), Zurich, Switzerland.
  • 20
    • 0030157416 scopus 로고    scopus 로고
    • Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In The 1996 ACM SIGMOD international conference on management of data (pp. 1-12). Montreal, Canada.
    • Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In The 1996 ACM SIGMOD international conference on management of data (pp. 1-12). Montreal, Canada.
  • 21
    • 53849113176 scopus 로고    scopus 로고
    • Wojciechowski, M., & Zakrzewicz, M. (2002). Dataset filtering techniques in constraint-based frequent pattern mining. Pattern detection and discovery. London, UK.
    • Wojciechowski, M., & Zakrzewicz, M. (2002). Dataset filtering techniques in constraint-based frequent pattern mining. Pattern detection and discovery. London, UK.
  • 22
    • 53849121117 scopus 로고    scopus 로고
    • Zaiane, O. R., & Mohammed, E. H. (2003). COFI-tree mining: A new approach to pattern growth with reduced candidacy generation. In The IEEE international conference on data mining.
    • Zaiane, O. R., & Mohammed, E. H. (2003). COFI-tree mining: A new approach to pattern growth with reduced candidacy generation. In The IEEE international conference on data mining.
  • 23
    • 53849143799 scopus 로고    scopus 로고
    • Zaki, M. J., Hsiao, & C. J. (2002). CHARM: an efficient algorithm for closed itemset mining. In The second SIAM international conference on data mining. Arlington.
    • Zaki, M. J., Hsiao, & C. J. (2002). CHARM: an efficient algorithm for closed itemset mining. In The second SIAM international conference on data mining. Arlington.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.