메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 102-110

Application of rough set and decision tree for characterization of premonitory factors of low seismic activity

Author keywords

Decision tree; Earthquake prediction; Machine learning; Rough set theory

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONCENTRATION (PROCESS); DECISION MAKING; DECISION THEORY; DECISION TREES; ENGINEERING GEOLOGY; FUZZY SETS; INFORMATION THEORY; KETONES; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; RADON; ROBOT LEARNING; SEISMOLOGY; SET THEORY;

EID: 53849084467     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.09.032     Document Type: Article
Times cited : (42)

References (47)
  • 1
    • 0025725905 scopus 로고
    • Instance based learning algorithms
    • Aha D., and Kibler D. Instance based learning algorithms. Machine Learning 6 (1991) 37-66
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 2
    • 53849121120 scopus 로고    scopus 로고
    • Bazan, J. G., Skowron, A., & Synak, P. (1994). Dynamic reducts as a tool for extracting laws from decisions tables. Paper presented at the eigth international symposium on methodologies for intelligent systems. London, UK.
    • Bazan, J. G., Skowron, A., & Synak, P. (1994). Dynamic reducts as a tool for extracting laws from decisions tables. Paper presented at the eigth international symposium on methodologies for intelligent systems. London, UK.
  • 3
    • 0038793942 scopus 로고    scopus 로고
    • Specific Features of radon earthquake precursors
    • Belayaev A. Specific Features of radon earthquake precursors. Geochemistry International 12 (2001) 1245-1250
    • (2001) Geochemistry International , vol.12 , pp. 1245-1250
    • Belayaev, A.1
  • 4
    • 0043234660 scopus 로고    scopus 로고
    • Variable precision rough set theory and data discrimination: An application to corporate failure prediction
    • Beynon M., and Peel M. Variable precision rough set theory and data discrimination: An application to corporate failure prediction. OMEGA 29 (2001) 561-576
    • (2001) OMEGA , vol.29 , pp. 561-576
    • Beynon, M.1    Peel, M.2
  • 5
    • 0034763882 scopus 로고    scopus 로고
    • Difficulties with interpreting changes in groundwater gas content as earthquake precursors in Kamchatka
    • Biagi P.F., Ermini A., Kingsley A., Khatkevich S.P., and Gordeev Y.M. Difficulties with interpreting changes in groundwater gas content as earthquake precursors in Kamchatka. Russian Journal of Seismology 5 (2001) 487-497
    • (2001) Russian Journal of Seismology , vol.5 , pp. 487-497
    • Biagi, P.F.1    Ermini, A.2    Kingsley, A.3    Khatkevich, S.P.4    Gordeev, Y.M.5
  • 7
    • 0005073905 scopus 로고    scopus 로고
    • IRIS revisited: A comparison of discriminant and enhanced rough set data analysis
    • Rough sets in knowledge discovery 2: Applications. Polkowski L., and Skowron A. (Eds), Physica-Verlag, New York
    • Browne C., Duntsch I., and Gediga G. IRIS revisited: A comparison of discriminant and enhanced rough set data analysis. In: Polkowski L., and Skowron A. (Eds). Rough sets in knowledge discovery 2: Applications. Case studies and software systems (1998), Physica-Verlag, New York 345-368
    • (1998) Case studies and software systems , pp. 345-368
    • Browne, C.1    Duntsch, I.2    Gediga, G.3
  • 8
    • 0033771699 scopus 로고    scopus 로고
    • Robust statistical methods to discriminate extreme events in geoelectrical precursory signals: Implications with earthquake prediction
    • Cuomo V., Bello G.D., Lapenna V., Piscitelli S., Telesca L., Macchiato M., et al. Robust statistical methods to discriminate extreme events in geoelectrical precursory signals: Implications with earthquake prediction. Natural Hazards 21 (2000) 247-261
    • (2000) Natural Hazards , vol.21 , pp. 247-261
    • Cuomo, V.1    Bello, G.D.2    Lapenna, V.3    Piscitelli, S.4    Telesca, L.5    Macchiato, M.6
  • 9
    • 39049130113 scopus 로고    scopus 로고
    • A comparison of rough sets and recursive partitioning induction approaches: An application to commercial loans
    • Daubie M., Levecq P., and Meskens N. A comparison of rough sets and recursive partitioning induction approaches: An application to commercial loans. International Transactions in Operational Research 9 (2002) 681-694
    • (2002) International Transactions in Operational Research , vol.9 , pp. 681-694
    • Daubie, M.1    Levecq, P.2    Meskens, N.3
  • 11
    • 19344368820 scopus 로고    scopus 로고
    • Applications of KDD methods in environmental sciences
    • Kloesgen W., and Zytkow J. (Eds), Oxford University Press, Oxford
    • Dmeroski S. Applications of KDD methods in environmental sciences. In: Kloesgen W., and Zytkow J. (Eds). Handbook of data mining and knowledge discovery (2002), Oxford University Press, Oxford
    • (2002) Handbook of data mining and knowledge discovery
    • Dmeroski, S.1
  • 13
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • Düntsch I., and Gediga G. Uncertainty measures of rough set prediction. Artificial Intelligence 106 1 (1998) 77-107
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 77-107
    • Düntsch, I.1    Gediga, G.2
  • 14
    • 53849109030 scopus 로고    scopus 로고
    • Fleischer, R. L., & Mogro-Campero, A. (1981). Radon transport in theearth a tool for uranium exploration and earthquake prediction. Paper presented at the 11th international SSNTD conference, 7-12 September.
    • Fleischer, R. L., & Mogro-Campero, A. (1981). Radon transport in theearth a tool for uranium exploration and earthquake prediction. Paper presented at the 11th international SSNTD conference, 7-12 September.
  • 15
    • 33646264317 scopus 로고    scopus 로고
    • Use of rough sets analysis to classify Siberian forest ecosystems according to net primary production of phytomass
    • Flinkman M., Michalowski W., Nilsson S., Slowinski R., Susmaga R., and Wilk S. Use of rough sets analysis to classify Siberian forest ecosystems according to net primary production of phytomass. INFOR 38 3 (2000) 145-160
    • (2000) INFOR , vol.38 , Issue.3 , pp. 145-160
    • Flinkman, M.1    Michalowski, W.2    Nilsson, S.3    Slowinski, R.4    Susmaga, R.5    Wilk, S.6
  • 16
    • 0002406089 scopus 로고    scopus 로고
    • Knowledge discovery based on neural networks
    • Fu L.M. Knowledge discovery based on neural networks. Communications of the ACM 42 11 (1999) 47-50
    • (1999) Communications of the ACM , vol.42 , Issue.11 , pp. 47-50
    • Fu, L.M.1
  • 17
    • 53849142015 scopus 로고    scopus 로고
    • Grzymala-Busse, J. W., & Than, S. (1992). Reduction of instance space in machine learning from examples. Paper presented at the Proceedings of the fifth international symposium on artificial intelligence, Cancun, Mexico, December 7.
    • Grzymala-Busse, J. W., & Than, S. (1992). Reduction of instance space in machine learning from examples. Paper presented at the Proceedings of the fifth international symposium on artificial intelligence, Cancun, Mexico, December 7.
  • 18
    • 0029305145 scopus 로고
    • Rough set reduction of attributes and their domains for neural networks
    • Jelonek J., Krawiec K., and Slowinski R. Rough set reduction of attributes and their domains for neural networks. Computational Intelligence 11 (1995) 339-347
    • (1995) Computational Intelligence , vol.11 , pp. 339-347
    • Jelonek, J.1    Krawiec, K.2    Slowinski, R.3
  • 19
    • 0011156988 scopus 로고
    • Radon monitoring for earthquake prediction in China
    • King C.Y. Radon monitoring for earthquake prediction in China. Earthquake Prediction Research 3 (1985) 47-68
    • (1985) Earthquake Prediction Research , vol.3 , pp. 47-68
    • King, C.Y.1
  • 22
    • 0036027422 scopus 로고    scopus 로고
    • Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3
    • Mak B., and Munakata T. Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3. European Journal of Operational Research 136 (2002) 212-229
    • (2002) European Journal of Operational Research , vol.136 , pp. 212-229
    • Mak, B.1    Munakata, T.2
  • 26
    • 0001429180 scopus 로고    scopus 로고
    • From Optimal Hyperplanes to Optimal Decision Trees
    • Nguyen H.S. From Optimal Hyperplanes to Optimal Decision Trees. Fundamenta Informaticae 34 1-2 (1998) 145-174
    • (1998) Fundamenta Informaticae , vol.34 , Issue.1-2 , pp. 145-174
    • Nguyen, H.S.1
  • 27
    • 53849087351 scopus 로고    scopus 로고
    • Øhrn, A. (1999). Discernibility and rough sets in medicine: Tools and applications. Unpublished PhD Thesis, Norwegian University of Science and Technology.
    • Øhrn, A. (1999). Discernibility and rough sets in medicine: Tools and applications. Unpublished PhD Thesis, Norwegian University of Science and Technology.
  • 30
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 32
    • 0002580328 scopus 로고
    • From rough set theory to evidence theory
    • Yager R., Fedrizzi M., and Kacprzyk J. (Eds), John Wiley & Sons, Inc., New York
    • Skowron A., and Grzymalla-Busse J. From rough set theory to evidence theory. In: Yager R., Fedrizzi M., and Kacprzyk J. (Eds). Advances in the Dempster-Shafer theory of evidence (1994), John Wiley & Sons, Inc., New York 192-271
    • (1994) Advances in the Dempster-Shafer theory of evidence , pp. 192-271
    • Skowron, A.1    Grzymalla-Busse, J.2
  • 35
    • 0002667176 scopus 로고
    • Rough sets theory and discriminant methods as tools for analysis of information systems - A comparative study
    • Stefanowski J. Rough sets theory and discriminant methods as tools for analysis of information systems - A comparative study. Foundations of Computing and Decision Sciences 2 (1992) 81-98
    • (1992) Foundations of Computing and Decision Sciences , vol.2 , pp. 81-98
    • Stefanowski, J.1
  • 36
    • 53849146587 scopus 로고    scopus 로고
    • Stefanowski, J. (1998). On rough set based approaches to induction of decision rules in rough set in knowledge discovery. In A. Skowron, & L. Polkowski (Eds.). (Vol. 1, pp. 525-529). Physica Verlag: Heidelberg.
    • Stefanowski, J. (1998). On rough set based approaches to induction of decision rules in rough set in knowledge discovery. In A. Skowron, & L. Polkowski (Eds.). (Vol. 1, pp. 525-529). Physica Verlag: Heidelberg.
  • 39
    • 53849096560 scopus 로고    scopus 로고
    • Szczuka, M. S. (1999). Symbolic and neural network methods for classifier construction. Unpublished PhD Dissertation, Warsaw University.
    • Szczuka, M. S. (1999). Symbolic and neural network methods for classifier construction. Unpublished PhD Dissertation, Warsaw University.
  • 40
    • 53849097533 scopus 로고    scopus 로고
    • Observation of Radon for earthquake prediction research
    • Takahashi M. Observation of Radon for earthquake prediction research. Geochimica et Cosmochimica Acta Supplement 67 18 (2003) 468
    • (2003) Geochimica et Cosmochimica Acta Supplement , vol.67 , Issue.18 , pp. 468
    • Takahashi, M.1
  • 41
    • 0005035095 scopus 로고
    • Some experiments to compare rough sets theory and ordinal statistical methods
    • Intelligent decision support: Handbook of applications and advances of rough set theory. Slowinski R. (Ed), Kluwer Academic Publishers, Dordrecht
    • Teghem J., and Benjelloun M. Some experiments to compare rough sets theory and ordinal statistical methods. In: Slowinski R. (Ed). Intelligent decision support: Handbook of applications and advances of rough set theory. System Theory, Knowledge Engineering and Problem Solving Vol. 11 (1992), Kluwer Academic Publishers, Dordrecht 267-284
    • (1992) System Theory, Knowledge Engineering and Problem Solving , vol.11 , pp. 267-284
    • Teghem, J.1    Benjelloun, M.2
  • 42
    • 0042489482 scopus 로고
    • Use of "rough sets" method to draw premonitory factors for earthquakes by emphasing gas geochemistry: The case of a low seismic activity context in Belgium
    • Intelligent decision support: Handbook of applications and advances of rough set theory. Slowinski R. (Ed), Kluwer Academic Publishers, Dordrecht
    • Teghem J., and Charlet J.M. Use of "rough sets" method to draw premonitory factors for earthquakes by emphasing gas geochemistry: The case of a low seismic activity context in Belgium. In: Slowinski R. (Ed). Intelligent decision support: Handbook of applications and advances of rough set theory. System Theory, Knowledge Engineering and Problem Solving Vol. 11 (1992), Kluwer Academic Publishers, Dordrecht 165-179
    • (1992) System Theory, Knowledge Engineering and Problem Solving , vol.11 , pp. 165-179
    • Teghem, J.1    Charlet, J.M.2
  • 43
    • 26244447697 scopus 로고    scopus 로고
    • Multifractal fluctuations in earthquake-related geoelectrical signals
    • Telesca L., Lapenna V., and Macchiato M. Multifractal fluctuations in earthquake-related geoelectrical signals. New Journal of Physics 7 214 (2005)
    • (2005) New Journal of Physics , vol.7 , Issue.214
    • Telesca, L.1    Lapenna, V.2    Macchiato, M.3
  • 46
    • 53849130838 scopus 로고    scopus 로고
    • Wroblewski, J. (1995). Finding minimal reducts using genetic algorithms. In P. P. Wang (Ed.), Proceedings of the international workshop on rough sets soft computing at second annual joint conference on information sciences (JCIS'95) (pp. 186-189). Wrightsville Beach, NC.
    • Wroblewski, J. (1995). Finding minimal reducts using genetic algorithms. In P. P. Wang (Ed.), Proceedings of the international workshop on rough sets soft computing at second annual joint conference on information sciences (JCIS'95) (pp. 186-189). Wrightsville Beach, NC.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.