메뉴 건너뛰기




Volumn 94, Issue 1-2, 2008, Pages 2-9

Sensitivity and stability: A signal propagation sweet spot in a sheet of recurrent centre crossing neurons

Author keywords

Centre crossing networks; Linear stability analysis; May Wigner threshold; Network dynamics; Signal propagation

Indexed keywords

CYTOLOGY; NERVOUS SYSTEM; SIGNALING;

EID: 53749107262     PISSN: 03032647     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biosystems.2008.05.026     Document Type: Article
Times cited : (1)

References (25)
  • 1
    • 84977060605 scopus 로고
    • On the dynamics of small continuous-time recurrent neural networks
    • Beer R.D. On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3 4 (1995) 471-511
    • (1995) Adaptive Behavior , vol.3 , Issue.4 , pp. 471-511
    • Beer, R.D.1
  • 2
    • 85194585743 scopus 로고    scopus 로고
    • Buckley, C.L., 2007. A systemic analysis of the ideas imminent in neuromodulation. Ph.D. Thesis. School of Electronics & Computer Science, University of Southampton.
    • Buckley, C.L., 2007. A systemic analysis of the ideas imminent in neuromodulation. Ph.D. Thesis. School of Electronics & Computer Science, University of Southampton.
  • 3
    • 53749103367 scopus 로고    scopus 로고
    • The fallacy of general purpose bio-inspired computing
    • Rocha L.M., Yaeger L.S., Bedau M.A., Floreano D., Goldstone R.L., and Vespignani A. (Eds), MIT Press, Cambridge MA
    • Bullock S. The fallacy of general purpose bio-inspired computing. In: Rocha L.M., Yaeger L.S., Bedau M.A., Floreano D., Goldstone R.L., and Vespignani A. (Eds). Proceedings of the Tenth International Conference on Artificial Life (2006), MIT Press, Cambridge MA 540-545
    • (2006) Proceedings of the Tenth International Conference on Artificial Life , pp. 540-545
    • Bullock, S.1
  • 6
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi K., and Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6 (1993) 801-806
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 7
    • 36949041214 scopus 로고
    • Connectance of large dynamic (cybernetic) systems: critical values for stability
    • Gardner M.R., and Ashby W.R. Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228 (1970) 784
    • (1970) Nature , vol.228 , pp. 784
    • Gardner, M.R.1    Ashby, W.R.2
  • 9
    • 85194531969 scopus 로고    scopus 로고
    • Husbands, P., Smith, T., N.J., O'Shea, M., 1998. Better living through chemistry: evolving GasNets for robot control, Connection Science, 10, 185-210
    • Husbands, P., Smith, T., N.J., O'Shea, M., 1998. Better living through chemistry: evolving GasNets for robot control, Connection Science, 10, 185-210
  • 10
    • 85194584437 scopus 로고    scopus 로고
    • Jaeger, H., 2001. The "echo state" appraoch to analysing and training recurrent neural networks. GMD-Report 148. German National Research Institute for Computer Science.
    • Jaeger, H., 2001. The "echo state" appraoch to analysing and training recurrent neural networks. GMD-Report 148. German National Research Institute for Computer Science.
  • 11
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., and Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304 (2004) 78-80
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 12
    • 0037387041 scopus 로고    scopus 로고
    • On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance
    • Litvak V., Sompolinsky H., Segev I., and Abeles M. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. The Journal of Neuroscience 23 7 (2003) 3006-3015
    • (2003) The Journal of Neuroscience , vol.23 , Issue.7 , pp. 3006-3015
    • Litvak, V.1    Sompolinsky, H.2    Segev, I.3    Abeles, M.4
  • 13
    • 0036716441 scopus 로고    scopus 로고
    • Center-crossing recurrent neural networks for the evolution of rhythmic behavior
    • Mathayomchan B., and Beer R.D. Center-crossing recurrent neural networks for the evolution of rhythmic behavior. Neural Computation 14 (2002) 2043-2051
    • (2002) Neural Computation , vol.14 , pp. 2043-2051
    • Mathayomchan, B.1    Beer, R.D.2
  • 14
    • 0015514970 scopus 로고
    • Will a large complex system be stable
    • May R.M. Will a large complex system be stable. Nature 238 (1972) 413-414
    • (1972) Nature , vol.238 , pp. 413-414
    • May, R.M.1
  • 17
    • 9944219948 scopus 로고    scopus 로고
    • Complexity vs. stability in small-world networks
    • Sinha S. Complexity vs. stability in small-world networks. Physica A (2005) 147-153
    • (2005) Physica A , pp. 147-153
    • Sinha, S.1
  • 18
    • 41349083974 scopus 로고    scopus 로고
    • Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics
    • Sinha S., and Sinha S. Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics. Physical Review Let. E 71 (2005) 1-4
    • (2005) Physical Review Let. E , vol.71 , pp. 1-4
    • Sinha, S.1    Sinha, S.2
  • 19
    • 0033385627 scopus 로고    scopus 로고
    • On an early result on stability and complexity
    • Solow A.R., Costello C., and Beet A. On an early result on stability and complexity. The American Naturalist 154 5 (1999) 587-588
    • (1999) The American Naturalist , vol.154 , Issue.5 , pp. 587-588
    • Solow, A.R.1    Costello, C.2    Beet, A.3
  • 21
    • 0033135312 scopus 로고    scopus 로고
    • Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same
    • Turrigiano G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neuroscience 22 (1999) 221-227
    • (1999) Trends in Neuroscience , vol.22 , pp. 221-227
    • Turrigiano, G.G.1
  • 23
    • 33645972657 scopus 로고    scopus 로고
    • Homeostatic plasticity in recurrent neural networks
    • Schaal S., Ijspeert A., Billard A., Vijayakumar S., Hallam J., and Meyer J.-A. (Eds), MIT Press, Cambridge, MA
    • Williams H. Homeostatic plasticity in recurrent neural networks. In: Schaal S., Ijspeert A., Billard A., Vijayakumar S., Hallam J., and Meyer J.-A. (Eds). Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior (2004), MIT Press, Cambridge, MA 344-353
    • (2004) Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior , pp. 344-353
    • Williams, H.1
  • 24
    • 85194547748 scopus 로고    scopus 로고
    • Williams, H.P., 2006. Homeotstatic adaptive networks. Ph.D. Thesis. Biosystems Group, School of Computing, University of Leeds.
    • Williams, H.P., 2006. Homeotstatic adaptive networks. Ph.D. Thesis. Biosystems Group, School of Computing, University of Leeds.
  • 25
    • 33846076183 scopus 로고    scopus 로고
    • Homeostatic plasticity improves signal propagation in continuous time recurrent neural networks
    • Williams H., and Noble J. Homeostatic plasticity improves signal propagation in continuous time recurrent neural networks. Biosystems 87 2-3 (2007) 252-259
    • (2007) Biosystems , vol.87 , Issue.2-3 , pp. 252-259
    • Williams, H.1    Noble, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.