-
1
-
-
84977060605
-
On the dynamics of small continuous-time recurrent neural networks
-
Beer R.D. On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3 4 (1995) 471-511
-
(1995)
Adaptive Behavior
, vol.3
, Issue.4
, pp. 471-511
-
-
Beer, R.D.1
-
2
-
-
85194585743
-
-
Buckley, C.L., 2007. A systemic analysis of the ideas imminent in neuromodulation. Ph.D. Thesis. School of Electronics & Computer Science, University of Southampton.
-
Buckley, C.L., 2007. A systemic analysis of the ideas imminent in neuromodulation. Ph.D. Thesis. School of Electronics & Computer Science, University of Southampton.
-
-
-
-
3
-
-
53749103367
-
The fallacy of general purpose bio-inspired computing
-
Rocha L.M., Yaeger L.S., Bedau M.A., Floreano D., Goldstone R.L., and Vespignani A. (Eds), MIT Press, Cambridge MA
-
Bullock S. The fallacy of general purpose bio-inspired computing. In: Rocha L.M., Yaeger L.S., Bedau M.A., Floreano D., Goldstone R.L., and Vespignani A. (Eds). Proceedings of the Tenth International Conference on Artificial Life (2006), MIT Press, Cambridge MA 540-545
-
(2006)
Proceedings of the Tenth International Conference on Artificial Life
, pp. 540-545
-
-
Bullock, S.1
-
6
-
-
0027154319
-
Approximation of dynamical systems by continuous time recurrent neural networks
-
Funahashi K., and Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6 (1993) 801-806
-
(1993)
Neural Networks
, vol.6
, pp. 801-806
-
-
Funahashi, K.1
Nakamura, Y.2
-
7
-
-
36949041214
-
Connectance of large dynamic (cybernetic) systems: critical values for stability
-
Gardner M.R., and Ashby W.R. Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228 (1970) 784
-
(1970)
Nature
, vol.228
, pp. 784
-
-
Gardner, M.R.1
Ashby, W.R.2
-
9
-
-
85194531969
-
-
Husbands, P., Smith, T., N.J., O'Shea, M., 1998. Better living through chemistry: evolving GasNets for robot control, Connection Science, 10, 185-210
-
Husbands, P., Smith, T., N.J., O'Shea, M., 1998. Better living through chemistry: evolving GasNets for robot control, Connection Science, 10, 185-210
-
-
-
-
10
-
-
85194584437
-
-
Jaeger, H., 2001. The "echo state" appraoch to analysing and training recurrent neural networks. GMD-Report 148. German National Research Institute for Computer Science.
-
Jaeger, H., 2001. The "echo state" appraoch to analysing and training recurrent neural networks. GMD-Report 148. German National Research Institute for Computer Science.
-
-
-
-
11
-
-
1842421269
-
Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
-
Jaeger H., and Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304 (2004) 78-80
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
12
-
-
0037387041
-
On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance
-
Litvak V., Sompolinsky H., Segev I., and Abeles M. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. The Journal of Neuroscience 23 7 (2003) 3006-3015
-
(2003)
The Journal of Neuroscience
, vol.23
, Issue.7
, pp. 3006-3015
-
-
Litvak, V.1
Sompolinsky, H.2
Segev, I.3
Abeles, M.4
-
13
-
-
0036716441
-
Center-crossing recurrent neural networks for the evolution of rhythmic behavior
-
Mathayomchan B., and Beer R.D. Center-crossing recurrent neural networks for the evolution of rhythmic behavior. Neural Computation 14 (2002) 2043-2051
-
(2002)
Neural Computation
, vol.14
, pp. 2043-2051
-
-
Mathayomchan, B.1
Beer, R.D.2
-
14
-
-
0015514970
-
Will a large complex system be stable
-
May R.M. Will a large complex system be stable. Nature 238 (1972) 413-414
-
(1972)
Nature
, vol.238
, pp. 413-414
-
-
May, R.M.1
-
17
-
-
9944219948
-
Complexity vs. stability in small-world networks
-
Sinha S. Complexity vs. stability in small-world networks. Physica A (2005) 147-153
-
(2005)
Physica A
, pp. 147-153
-
-
Sinha, S.1
-
18
-
-
41349083974
-
Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics
-
Sinha S., and Sinha S. Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics. Physical Review Let. E 71 (2005) 1-4
-
(2005)
Physical Review Let. E
, vol.71
, pp. 1-4
-
-
Sinha, S.1
Sinha, S.2
-
19
-
-
0033385627
-
On an early result on stability and complexity
-
Solow A.R., Costello C., and Beet A. On an early result on stability and complexity. The American Naturalist 154 5 (1999) 587-588
-
(1999)
The American Naturalist
, vol.154
, Issue.5
, pp. 587-588
-
-
Solow, A.R.1
Costello, C.2
Beet, A.3
-
21
-
-
0033135312
-
Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same
-
Turrigiano G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neuroscience 22 (1999) 221-227
-
(1999)
Trends in Neuroscience
, vol.22
, pp. 221-227
-
-
Turrigiano, G.G.1
-
23
-
-
33645972657
-
Homeostatic plasticity in recurrent neural networks
-
Schaal S., Ijspeert A., Billard A., Vijayakumar S., Hallam J., and Meyer J.-A. (Eds), MIT Press, Cambridge, MA
-
Williams H. Homeostatic plasticity in recurrent neural networks. In: Schaal S., Ijspeert A., Billard A., Vijayakumar S., Hallam J., and Meyer J.-A. (Eds). Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior (2004), MIT Press, Cambridge, MA 344-353
-
(2004)
Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior
, pp. 344-353
-
-
Williams, H.1
-
24
-
-
85194547748
-
-
Williams, H.P., 2006. Homeotstatic adaptive networks. Ph.D. Thesis. Biosystems Group, School of Computing, University of Leeds.
-
Williams, H.P., 2006. Homeotstatic adaptive networks. Ph.D. Thesis. Biosystems Group, School of Computing, University of Leeds.
-
-
-
-
25
-
-
33846076183
-
Homeostatic plasticity improves signal propagation in continuous time recurrent neural networks
-
Williams H., and Noble J. Homeostatic plasticity improves signal propagation in continuous time recurrent neural networks. Biosystems 87 2-3 (2007) 252-259
-
(2007)
Biosystems
, vol.87
, Issue.2-3
, pp. 252-259
-
-
Williams, H.1
Noble, J.2
|