메뉴 건너뛰기




Volumn 22, Issue 2, 2008, Pages 101-105

On the numerical stability of two widely used PLS algorithms

Author keywords

Algorithm; Gram schmidt; Numerical stability; PLS; Reorthogonalization; SIMPLS

Indexed keywords

MOLECULAR PHYSICS;

EID: 53649111957     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1112     Document Type: Article
Times cited : (12)

References (32)
  • 1
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
    • Wold S, Ruhe A, Wold H, Dunn WJ III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 1984; 5: 735-743.
    • (1984) SIAM J. Sci. Stat. Comput , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn III, W.J.4
  • 2
    • 45949122062 scopus 로고
    • Analysis of two partial-least-squares algorithms for multivariate calibration
    • Marine R. Analysis of two partial-least-squares algorithms for multivariate calibration. Chemom. Intell. Lab. Syst. 1987; 2: 187-197.
    • (1987) Chemom. Intell. Lab. Syst , vol.2 , pp. 187-197
    • Marine, R.1
  • 3
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland IS. On the structure of partial least squares regression. Commun. Stat. -Simula. 1988; 17: 581-607.
    • (1988) Commun. Stat. -Simula , vol.17 , pp. 581-607
    • Helland, I.S.1
  • 4
    • 0027530250 scopus 로고
    • SIMPLS: An alternative approach to partial least squares regression
    • de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993; 18: 251-263.
    • (1993) Chemom. Intell. Lab. Syst , vol.18 , pp. 251-263
    • de Jong, S.1
  • 5
    • 0027672324 scopus 로고
    • Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA
    • Bush BL, Nachbar RB. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J. Comput. Aided Mol. Des. 1993; 7: 587-619.
    • (1993) J. Comput. Aided Mol. Des , vol.7 , pp. 587-619
    • Bush, B.L.1    Nachbar, R.B.2
  • 7
    • 84984283939 scopus 로고
    • Kernel-based PLS regression crossvalidation and applications to spectral data
    • Lindgren F, Geladi P, Wold S. Kernel-based PLS regression crossvalidation and applications to spectral data. J. Chemom. 1994; 8: 377-389.
    • (1994) J. Chemom , vol.8 , pp. 377-389
    • Lindgren, F.1    Geladi, P.2    Wold, S.3
  • 8
    • 84984291168 scopus 로고
    • Comments on the PLS kernel algorithm
    • de Jong S, ter Braak OF. Comments on the PLS kernel algorithm. J. Chemom. 1994; 8: 169-174.
    • (1994) J. Chemom , vol.8 , pp. 169-174
    • de Jong, S.1    ter Braak, O.F.2
  • 9
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm
    • Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J. Chemom. 1994; 8: 111-125.
    • (1994) J. Chemom , vol.8 , pp. 111-125
    • Rännar, S.1    Lindgren, F.2    Geladi, P.3    Wold, S.4
  • 10
    • 84984344482 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part II: Cross-validation, missing data and examples
    • Rännar S, Geladi P, Lindgren F, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part II: cross-validation, missing data and examples. J. Chemom. 1995; 9: 459-470.
    • (1995) J. Chemom , vol.9 , pp. 459-470
    • Rännar, S.1    Geladi, P.2    Lindgren, F.3    Wold, S.4
  • 11
    • 84984279548 scopus 로고
    • A combined theory for PCA and PLS
    • Höskuldsson A. A combined theory for PCA and PLS. J. Chemom. 1995; 9: 91-123.
    • (1995) J. Chemom , vol.9 , pp. 91-123
    • Höskuldsson, A.1
  • 12
    • 84984368311 scopus 로고
    • A simple iteration algorithm for PLS regression
    • Zhu E, Barnes RM. A simple iteration algorithm for PLS regression. J. Chemom. 1995; 9: 363-372.
    • (1995) J. Chemom , vol.9 , pp. 363-372
    • Zhu, E.1    Barnes, R.M.2
  • 13
    • 0346177306 scopus 로고    scopus 로고
    • A fast method to compute orthogonal loadings partial least-squares
    • Goutis C. A fast method to compute orthogonal loadings partial least-squares. J. Chemom. 1997; 11: 33-38.
    • (1997) J. Chemom , vol.11 , pp. 33-38
    • Goutis, C.1
  • 14
  • 15
    • 0005913793 scopus 로고    scopus 로고
    • The objective function of partial least squares regression
    • ter Braak CJF, de Jong S. The objective function of partial least squares regression. J. Chemom. 1998; 12: 41-54.
    • (1998) J. Chemom , vol.12 , pp. 41-54
    • ter Braak, C.J.F.1    de Jong, S.2
  • 16
    • 0034710170 scopus 로고    scopus 로고
    • Fast regression methods in a Lanczos (or PLS-1) basis. Theory and applications
    • Wu W, Manne R. Fast regression methods in a Lanczos (or PLS-1) basis. Theory and applications. Chemom. Intell. Lab. Syst. 2000; 51: 145-161.
    • (2000) Chemom. Intell. Lab. Syst , vol.51 , pp. 145-161
    • Wu, W.1    Manne, R.2
  • 17
    • 0035109973 scopus 로고    scopus 로고
    • Canonical partial least squares and continuum power regression
    • de Jong S, Wise BM, Ricker NL. Canonical partial least squares and continuum power regression. J. Chemom. 2001; 15: 85-100.
    • (2001) J. Chemom , vol.15 , pp. 85-100
    • de Jong, S.1    Wise, B.M.2    Ricker, N.L.3
  • 19
    • 33646773628 scopus 로고    scopus 로고
    • The Lanczos and conjugate gradient algorithms in finite precision arithmetic
    • Meurant G, Strakoš Z. The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numerica 2006; 15: 471-542.
    • (2006) Acta Numerica , vol.15 , pp. 471-542
    • Meurant, G.1    Strakoš, Z.2
  • 20
    • 85159504957 scopus 로고    scopus 로고
    • Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press: Cambridge, 1992; 66.
    • Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press: Cambridge, 1992; 66.
  • 22
    • 25744458022 scopus 로고    scopus 로고
    • On the round-off error analysis of the Gram-Schmidt algorithm with reorthogonalization
    • Technical Report TR/PA/02/33, CERFACS: Toulouse
    • Giraud L, Langou J, Rozložník M. On the round-off error analysis of the Gram-Schmidt algorithm with reorthogonalization. Technical Report TR/PA/02/33, CERFACS: Toulouse, 2002.
    • (2002)
    • Giraud, L.1    Langou, J.2    Rozložník, M.3
  • 23
    • 85159510213 scopus 로고    scopus 로고
    • Matlab, The Mathworks, Natick, MA
    • Matlab, The Mathworks, Natick, MA.
  • 25
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina M, Armanino C, Castino M, Ubigli M. Multivariate data analysis as a discriminating method of the origin of wines. Vitis 1986; 25: 189-201.
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 26
    • 0027323006 scopus 로고
    • An approach to interval estimation in partial least squares regression
    • Phatak A, Reilly PM, Penlidis A. An approach to interval estimation in partial least squares regression. Anal. Chim. Acta 1993; 277: 495-501.
    • (1993) Anal. Chim. Acta , vol.277 , pp. 495-501
    • Phatak, A.1    Reilly, P.M.2    Penlidis, A.3
  • 27
    • 0002449524 scopus 로고    scopus 로고
    • Prediction intervals in partial least squares
    • Denham MC. Prediction intervals in partial least squares. J. Chemom. 1997;11 : 39-52.
    • (1997) J. Chemom , vol.11 , pp. 39-52
    • Denham, M.C.1
  • 28
    • 0000079353 scopus 로고    scopus 로고
    • Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares
    • Faber K, Kowalski BR. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemom. 1997; 11: 181-238.
    • (1997) J. Chemom , vol.11 , pp. 181-238
    • Faber, K.1    Kowalski, B.R.2
  • 29
    • 33745855877 scopus 로고    scopus 로고
    • The asymptotic variance of the univariate PLS estimator
    • Phatak A, Reilly PM, Penlidis A. The asymptotic variance of the univariate PLS estimator. Linear Algebra Appl. 2002; 354: 245-253.
    • (2002) Linear Algebra Appl , vol.354 , pp. 245-253
    • Phatak, A.1    Reilly, P.M.2    Penlidis, A.3
  • 30
    • 3242693305 scopus 로고    scopus 로고
    • Calculation of PLS prediction intervals using efficient recursive relations for the Jacobian matrix
    • Serneels S, Lemberge P, Van Espen PJ. Calculation of PLS prediction intervals using efficient recursive relations for the Jacobian matrix. J. Chemom. 2004; 18: 76-80.
    • (2004) J. Chemom , vol.18 , pp. 76-80
    • Serneels, S.1    Lemberge, P.2    Van Espen, P.J.3
  • 31
    • 14744269749 scopus 로고    scopus 로고
    • Boosting partial least squares
    • Zhang MH, Xu QS, Massart DL. Boosting partial least squares. Anal. Chem. 2005; 77: 1423-1431.
    • (2005) Anal. Chem , vol.77 , pp. 1423-1431
    • Zhang, M.H.1    Xu, Q.S.2    Massart, D.L.3
  • 32
    • 34548797039 scopus 로고    scopus 로고
    • The model space in partial least squares regression
    • Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172.
    • (2007) J. Chemom , vol.21 , pp. 165-172
    • Pell, R.J.1    Ramos, L.S.2    Manne, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.