-
1
-
-
34547587247
-
-
a) S. Bag, P. N. Trikalitis, P. J. Chupas, G. S. Armatas, M. G. Kanatzidis, Science 2007, 317, 490-493;
-
(2007)
Science
, vol.317
, pp. 490-493
-
-
Bag, S.1
Trikalitis, P.N.2
Chupas, P.J.3
Armatas, G.S.4
Kanatzidis, M.G.5
-
2
-
-
4444279147
-
-
b) A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, P. M. Ajayan, Nat. Mater. 2004, 3, 610-614;
-
(2004)
Nat. Mater
, vol.3
, pp. 610-614
-
-
Srivastava, A.1
Srivastava, O.N.2
Talapatra, S.3
Vajtai, R.4
Ajayan, P.M.5
-
3
-
-
14744287028
-
-
c) S. R. Kanel, B. Manning, L. Charlet, H. Choi, Environ. Sci. Technol. 2005, 39, 1291-1298.
-
(2005)
Environ. Sci. Technol
, vol.39
, pp. 1291-1298
-
-
Kanel, S.R.1
Manning, B.2
Charlet, L.3
Choi, H.4
-
4
-
-
53549129586
-
-
Nanowaste refers to industrial sludge containing nanoparticles
-
Nanowaste refers to industrial sludge containing nanoparticles.
-
-
-
-
5
-
-
53549091416
-
-
VI that is added intentionally to maintain the current efficiency during the electrolysis of NaCl.
-
VI that is added intentionally to maintain the current efficiency during the electrolysis of NaCl.
-
-
-
-
8
-
-
0032167686
-
-
K. Kannan, T. Imagawa, A. Blankenship, J. Giesy, Environ. Sci. Technol. 1998, 32, 2507-2514.
-
(1998)
Environ. Sci. Technol
, vol.32
, pp. 2507-2514
-
-
Kannan, K.1
Imagawa, T.2
Blankenship, A.3
Giesy, J.4
-
11
-
-
33847694747
-
-
c) M. Li, Z. Twardowski, F. Mok, N. Tam, J. Appl. Electrochem. 2007, 37, 499-504.
-
(2007)
J. Appl. Electrochem
, vol.37
, pp. 499-504
-
-
Li, M.1
Twardowski, Z.2
Mok, F.3
Tam, N.4
-
13
-
-
0027048674
-
-
a) C. F. Lin, W. Rou, K. S. Lo, Water Sci. Technol. 1992, 26, 2301-2304;
-
(1992)
Water Sci. Technol
, vol.26
, pp. 2301-2304
-
-
Lin, C.F.1
Rou, W.2
Lo, K.S.3
-
15
-
-
33644989974
-
-
c) A. Agrawal, V. Kumar, B. D. Pandey, Miner. Process. Extr. Metall. Rev. 2006, 27, 99-130.
-
(2006)
Miner. Process. Extr. Metall. Rev
, vol.27
, pp. 99-130
-
-
Agrawal, A.1
Kumar, V.2
Pandey, B.D.3
-
16
-
-
53549134520
-
-
J. Zhao, CN1799716A, 2007;
-
a) J. Zhao, CN1799716A, 2007;
-
-
-
-
17
-
-
34247229229
-
-
b) C. T. Li, W. J. Lee, K. L. Huang, S. F. Fu, Y. C. Lai, Environ. Sci. Technol. 2007, 41, 2950-2956.
-
(2007)
Environ. Sci. Technol
, vol.41
, pp. 2950-2956
-
-
Li, C.T.1
Lee, W.J.2
Huang, K.L.3
Fu, S.F.4
Lai, Y.C.5
-
18
-
-
33749510848
-
-
J. Zhang, Z. Lin, Y. Z. Lan, G. Q. Ren, D. G. Chen, F. Huang, M. C. Hong, J. Am. Chem. Soc. 2006, 128, 12981-12987.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 12981-12987
-
-
Zhang, J.1
Lin, Z.2
Lan, Y.Z.3
Ren, G.Q.4
Chen, D.G.5
Huang, F.6
Hong, M.C.7
-
19
-
-
53549135842
-
-
2 nanomaterial in the nanowaste is positively charged.
-
2 nanomaterial in the nanowaste is positively charged.
-
-
-
-
21
-
-
53549119252
-
-
[13]
-
[13]
-
-
-
-
22
-
-
53549098033
-
-
Na2Mg(CO3)2 is slightly soluble in mineralizer A solution (approx. 30 mg L-1, As shown in Figure 5b, Na2Mg(CO3)2 can grow to 20 μm within 6 h, thus suggesting that the growth rate of Na2Mg(CO3) 2 crystals must be of the order of several micrometers per hour. The solubility of a similar, slightly soluble material, for example ZnS, is around 750 mg L-1 in 4 M NaOH. The growth rate of ZnS in 4 M NaOH at 100°C is only 0.02 nm h-1 via exclusive oriented attachment (OA) growth, or 0.0026 nm h-1 via Ostwald ripening (OR) growth.[11] The growth rate of Na2Mg(CO 3)2 is therefore extremely high. Such a high rate is not likely to be possible by oriented attachment growth due to the relatively large grain size or by classical Ostwald ripening growth due to slow precipitation/dissolution a
-
2 is therefore extremely high. Such a high rate is not likely to be possible by oriented attachment growth due to the relatively large grain size or by classical Ostwald ripening growth due to slow precipitation/dissolution at the particle/matrix interface.
-
-
-
-
23
-
-
0034604514
-
-
J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn, Science 2000, 289, 751-754.
-
(2000)
Science
, vol.289
, pp. 751-754
-
-
Banfield, J.F.1
Welch, S.A.2
Zhang, H.Z.3
Ebert, T.T.4
Penn, R.L.5
|