메뉴 건너뛰기




Volumn 222, Issue 2, 2008, Pages 364-371

Stability of stochastic partial differential equations with infinite delays

Author keywords

Asymptotic stability; Mild solution; Stochastic partial differential equation with delays

Indexed keywords

COMPUTATIONAL FLUID DYNAMICS; DIFFERENCE EQUATIONS; DIFFERENTIAL EQUATIONS; DIFFERENTIATION (CALCULUS); IMAGE SEGMENTATION; STOCHASTIC PROGRAMMING;

EID: 53449100050     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2007.11.002     Document Type: Article
Times cited : (36)

References (13)
  • 1
    • 53449091994 scopus 로고    scopus 로고
    • J.A.D. Appleby, Fixed points, stability and harmless stochastic perturbations, preprint
    • J.A.D. Appleby, Fixed points, stability and harmless stochastic perturbations, preprint
  • 3
    • 0002091556 scopus 로고
    • Asymptotic exponential stability of stochastic partial differential equations with delay
    • Caraballo T. Asymptotic exponential stability of stochastic partial differential equations with delay. Stochastics 33 (1990) 27-47
    • (1990) Stochastics , vol.33 , pp. 27-47
    • Caraballo, T.1
  • 4
    • 0033240583 scopus 로고    scopus 로고
    • Exponential stability of mild solutions of stochastic partial differential equations with delays
    • Caraballo T., and Liu K. Exponential stability of mild solutions of stochastic partial differential equations with delays. Stochastic Anal. Appl. 17 (1999) 743-763
    • (1999) Stochastic Anal. Appl. , vol.17 , pp. 743-763
    • Caraballo, T.1    Liu, K.2
  • 6
    • 0033441904 scopus 로고    scopus 로고
    • Exponential stability in mean-square of parabolic quasilinear stochastic delay evolution equations
    • Govindan T.E. Exponential stability in mean-square of parabolic quasilinear stochastic delay evolution equations. Stochastic Anal. Appl. 17 (1999) 443-461
    • (1999) Stochastic Anal. Appl. , vol.17 , pp. 443-461
    • Govindan, T.E.1
  • 7
    • 0001352872 scopus 로고
    • Asymptotic stability of the linear Itô equation in infinite dimensions
    • Haussmann U.G. Asymptotic stability of the linear Itô equation in infinite dimensions. J. Math. Anal. Appl. 65 (1978) 219-235
    • (1978) J. Math. Anal. Appl. , vol.65 , pp. 219-235
    • Haussmann, U.G.1
  • 8
    • 0020204928 scopus 로고
    • Stability of semilinear stochastic evolution equations
    • Ichikawa A. Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 (1982) 12-44
    • (1982) J. Math. Anal. Appl. , vol.90 , pp. 12-44
    • Ichikawa, A.1
  • 9
    • 0002476096 scopus 로고    scopus 로고
    • Lyapunov functionals and asymptotic stability of stochastic delay evolution equations
    • Liu K. Lyapunov functionals and asymptotic stability of stochastic delay evolution equations. Stochastics 63 (1998) 1-26
    • (1998) Stochastics , vol.63 , pp. 1-26
    • Liu, K.1
  • 11
    • 34249334949 scopus 로고    scopus 로고
    • Fixed points and stability of neutral stochastic delay differential equations
    • doi:10.1016/j.jmaa.2006.12.058
    • Luo J. Fixed points and stability of neutral stochastic delay differential equations. J. Math. Anal. Appl. (2007). doi:10.1016/j.jmaa.2006.12.058
    • (2007) J. Math. Anal. Appl.
    • Luo, J.1
  • 12
    • 0002991074 scopus 로고
    • Exponential stability for stochastic differential delay equations in Hilbert spaces
    • Mao X. Exponential stability for stochastic differential delay equations in Hilbert spaces. Quart. J. Math. 42 (1991) 77-85
    • (1991) Quart. J. Math. , vol.42 , pp. 77-85
    • Mao, X.1
  • 13
    • 0001816165 scopus 로고
    • Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces
    • Taniguchi T. Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces. Stochastics 53 (1995) 41-52
    • (1995) Stochastics , vol.53 , pp. 41-52
    • Taniguchi, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.