-
1
-
-
11944258314
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.62.525
-
H. Dehmelt, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.62.525 62, 525 (1990).
-
(1990)
Rev. Mod. Phys.
, vol.62
, pp. 525
-
-
Dehmelt, H.1
-
2
-
-
29444455742
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.22.1137
-
W. Neuhauser, M. Hohenstatt, P. E. Toschek, and H. Dehmelt, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.22.1137 22, 1137 (1980).
-
(1980)
Phys. Rev. A
, vol.22
, pp. 1137
-
-
Neuhauser, W.1
Hohenstatt, M.2
Toschek, P.E.3
Dehmelt, H.4
-
4
-
-
3743147625
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.57.1699
-
J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.57.1699 57, 1699 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 1699
-
-
Bergquist, J.C.1
Hulet, R.G.2
Itano, W.M.3
Wineland, D.J.4
-
5
-
-
0001700641
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.62.403
-
F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.403 62, 403 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 403
-
-
Diedrich, F.1
Bergquist, J.C.2
Itano, W.M.3
Wineland, D.J.4
-
8
-
-
0028538773
-
-
OPLEDP 0146-9592
-
Z. Hu and H. J. Kimble, Opt. Lett. OPLEDP 0146-9592 19, 1888 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1888
-
-
Hu, Z.1
Kimble, H.J.2
-
9
-
-
0030544575
-
-
EULEEJ 0295-5075 10.1209/epl/i1996-00510-7
-
F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i1996-00510-7 34, 651 (1996).
-
(1996)
Europhys. Lett.
, vol.34
, pp. 651
-
-
Ruschewitz, F.1
Bettermann, D.2
Peng, J.L.3
Ertmer, W.4
-
10
-
-
0034292596
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.3777
-
D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.3777 85, 3777 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3777
-
-
Frese, D.1
Ueberholz, B.2
Kuhr, S.3
Alt, W.4
Schrader, D.5
Gomer, V.6
Meschede, D.7
-
11
-
-
0035963330
-
-
NATUAS 0028-0836 10.1038/35082512
-
N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, Nature (London) NATUAS 0028-0836 10.1038/35082512 411, 1024 (2001).
-
(2001)
Nature (London)
, vol.411
, pp. 1024
-
-
Schlosser, N.1
Reymond, G.2
Protsenko, I.3
Grangier, P.4
-
12
-
-
33645713184
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.73.043406
-
M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.043406 73, 043406 (2006).
-
(2006)
Phys. Rev. A
, vol.73
, pp. 043406
-
-
Weber, M.1
Volz, J.2
Saucke, K.3
Kurtsiefer, C.4
Weinfurter, H.5
-
13
-
-
33144459265
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.063001
-
D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.063001 96, 063001 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 063001
-
-
Yavuz, D.D.1
Kulatunga, P.B.2
Urban, E.3
Johnson, T.A.4
Proite, N.5
Henage, T.6
Walker, T.G.7
Saffman, M.8
-
14
-
-
0242569150
-
-
NATUAS 0028-0836 10.1038/nature02008
-
O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, Nature (London) NATUAS 0028-0836 10.1038/nature02008 425, 937 (2003).
-
(2003)
Nature (London)
, vol.425
, pp. 937
-
-
Mandel, O.1
Greiner, M.2
Widera, A.3
Rom, T.4
Hänsch, T.W.5
Bloch, I.6
-
15
-
-
33645727684
-
-
NATUAS 0028-0836 10.1038/nature04628
-
J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, Nature (London) NATUAS 0028-0836 10.1038/nature04628 440, 779 (2006).
-
(2006)
Nature (London)
, vol.440
, pp. 779
-
-
Beugnon, J.1
Jones, M.P.A.2
Dingjan, J.3
Darquié, B.4
Messin, G.5
Browaeys, A.6
Grangier, P.7
-
16
-
-
34147131696
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.040301
-
M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75. 040301 75, 040301 (R) (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 040301
-
-
Jones, M.P.A.1
Beugnon, J.2
Gaëtan, A.3
Zhang, J.4
Messin, G.5
Browaeys, A.6
Grangier, P.7
-
17
-
-
33846374291
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.013406
-
Y. R. P. Sortais, H. Marion, C. Tuchendler, A. M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, and P. Grangier, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.013406 75, 013406 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 013406
-
-
Sortais, Y.R.P.1
Marion, H.2
Tuchendler, C.3
Lance, A.M.4
Lamare, M.5
Fournet, P.6
Armellin, C.7
Mercier, R.8
Messin, G.9
Browaeys, A.10
Grangier, P.11
-
18
-
-
0037499936
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.67.033403
-
W. Alt, D. Schrader, S. Kuhr, M. Müller, V. Gomer, and D. Meschede, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.033403 67, 033403 (2003).
-
(2003)
Phys. Rev. A
, vol.67
, pp. 033403
-
-
Alt, W.1
Schrader, D.2
Kuhr, S.3
Müller, M.4
Gomer, V.5
Meschede, D.6
-
19
-
-
0001017189
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.48.596
-
W. D. Phillips and H. Metcalf, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.48.596 48, 596 (1982).
-
(1982)
Phys. Rev. Lett.
, vol.48
, pp. 596
-
-
Phillips, W.D.1
Metcalf, H.2
-
21
-
-
0002826317
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.55.48
-
S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.55.48 55, 48 (1985).
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 48
-
-
Chu, S.1
Hollberg, L.2
Bjorkholm, J.E.3
Cable, A.4
Ashkin, A.5
-
22
-
-
0000054988
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.61.169
-
P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.61.169 61, 169 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 169
-
-
Lett, P.D.1
Watts, R.N.2
Westbrook, C.I.3
Phillips, W.D.4
Gould, P.L.5
Metcalf, H.J.6
-
24
-
-
0028513874
-
-
APBOEM 0946-2171 10.1007/BF01081396
-
M. Drewsen, Ph. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, and C. Salomon, Appl. Phys. B: Lasers Opt. APBOEM 0946-2171 10.1007/BF01081396 59, 283 (1994).
-
(1994)
Appl. Phys. B: Lasers Opt.
, vol.59
, pp. 283
-
-
Drewsen, M.1
Laurent, Ph.2
Nadir, A.3
Santarelli, G.4
Clairon, A.5
Castin, Y.6
Grison, D.7
Salomon, C.8
-
26
-
-
34548407915
-
-
JOBPDE 0740-3224
-
P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, J. Opt. Soc. Am. B JOBPDE 0740-3224 6, 2084 (1989).
-
(1989)
J. Opt. Soc. Am. B
, vol.6
, pp. 2084
-
-
Lett, P.D.1
Phillips, W.D.2
Rolston, S.L.3
Tanner, C.E.4
Watts, R.N.5
Westbrook, C.I.6
-
29
-
-
0001114963
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.59.1025
-
C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.59.1025 59, 1025 (1999).
-
(1999)
Phys. Rev. A
, vol.59
, pp. 1025
-
-
Cabrillo, C.1
Cirac, J.I.2
Garcia-Fernandez, P.3
Zoller, P.4
-
30
-
-
53349156053
-
-
We assume that an atom with an energy greater than the trap depth has sufficient time to exit the trap provided the following condition is fulfilled: 1/τ ν, where τ is the time the atom is in the trap and ν is the trap frequency in the axial direction. This condition is satisfied down to a final trap depth Uf / Ui ∼ 10-4, where τ× ν ∼10/1.
-
We assume that an atom with an energy greater than the trap depth has sufficient time to exit the trap provided the following condition is fulfilled: 1/τ ν, where τ is the time the atom is in the trap and ν is the trap frequency in the axial direction. This condition is satisfied down to a final trap depth Uf / Ui ∼ 10-4, where τ× ν ∼10/1.
-
-
-
-
31
-
-
53349119636
-
-
For the effective minimum trap depth Umin taking gravity into account turns out to be important for trap depths less than ∼10 μK because the gravity potential acts to tilt the trapping potential, thus lowering the potential barrier along the gravity axis.
-
For the effective minimum trap depth Umin taking gravity into account turns out to be important for trap depths less than ∼10 μK because the gravity potential acts to tilt the trapping potential, thus lowering the potential barrier along the gravity axis.
-
-
-
-
32
-
-
53349123563
-
-
After the release and recapture sequence we needed to bring the trap depth close to its initial value to measure if the atom is still present in the trap, otherwise the lasers sent on the atom would kick it out of the shallow trap too quickly to measure its presence.
-
After the release and recapture sequence we needed to bring the trap depth close to its initial value to measure if the atom is still present in the trap, otherwise the lasers sent on the atom would kick it out of the shallow trap too quickly to measure its presence.
-
-
-
|