-
1
-
-
53349108194
-
Eine Verallgemeinerung des Verfahrens des logarithmischen Potentials von Frisch für nichtlineare Optimierungprobleme
-
A. Pekora ed
-
L. Bittner. Eine Verallgemeinerung des Verfahrens des logarithmischen Potentials von Frisch für nichtlineare Optimierungprobleme. In: A. Pekora (ed.), Colloquium on Applications of Mathematics to Economics, Budapest, 1963, Akademiai Kiado. Publishing House of the Hungarian Acad, of Sciences, 1965.
-
(1965)
Colloquium on Applications of Mathematics to Economics, Budapest, 1963, Akademiai Kiado. Publishing House of the Hungarian Acad, of Sciences
-
-
Bittner, L.1
-
4
-
-
14944383664
-
Local behaviour of an iterative framework for generalized equations with nonisolated solutions
-
A. Fischer. Local behaviour of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94: 91-124, 2002.
-
(2002)
Math. Program
, vol.94
, pp. 91-124
-
-
Fischer, A.1
-
5
-
-
12144267008
-
Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ
-
C. Grossman, D. Klatte, and B. Kummer. Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ. Kybernetika 40: 571-584, 2004.
-
(2004)
Kybernetika
, vol.40
, pp. 571-584
-
-
Grossman, C.1
Klatte, D.2
Kummer, B.3
-
6
-
-
0001129318
-
Stability in the presence of degeneracy and error estimation
-
W.W. Hager and M.S. Gowda. Stability in the presence of degeneracy and error estimation. Math. Program. 85: 181-192, 1999.
-
(1999)
Math. Program
, vol.85
, pp. 181-192
-
-
Hager, W.W.1
Gowda, M.S.2
-
7
-
-
53349123775
-
-
A.F. Izmailov and M.V. Solodov. Computable primal error bounds based on the augmented Lagrangian and Lagrangian relaxation algorithms. Preprint A 2004/303, IMPA, Rio de Janeiro, 2004.
-
A.F. Izmailov and M.V. Solodov. Computable primal error bounds based on the augmented Lagrangian and Lagrangian relaxation algorithms. Preprint A 2004/303, IMPA, Rio de Janeiro, 2004.
-
-
-
-
8
-
-
18744393325
-
Karush-Kuhn-Tucker systems: Regularity conditions, error bounds and a class of Newton-type methods
-
A.F. Izmailov and M.V. Solodov. Karush-Kuhn-Tucker systems: regularity conditions, error bounds and a class of Newton-type methods. Math. Program. 95: 631-650, 2003.
-
(2003)
Math. Program
, vol.95
, pp. 631-650
-
-
Izmailov, A.F.1
Solodov, M.V.2
-
10
-
-
53349152684
-
On the convergence of the logarithmic barrier function method
-
F.A. Lootsma ed, Academic Press, London
-
R. Mifflin. On the convergence of the logarithmic barrier function method. In: F.A. Lootsma (ed.), Numerical Methods for Nonlinear Optimization. Academic Press, London, 1972.
-
(1972)
Numerical Methods for Nonlinear Optimization
-
-
Mifflin, R.1
-
11
-
-
34250401063
-
Convergence bounds for nonlinear programming algorithms
-
R. Mifflin. Convergence bounds for nonlinear programming algorithms. Math. Program. 8: 251-271, 1975.
-
(1975)
Math. Program
, vol.8
, pp. 251-271
-
-
Mifflin, R.1
-
12
-
-
0000150038
-
-
J.S. Pang. Error bounds in mathematical programming. Math. Program. 79: 299-332, 1997.
-
J.S. Pang. Error bounds in mathematical programming. Math. Program. 79: 299-332, 1997.
-
-
-
-
13
-
-
0016993914
-
Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems
-
S.M. Robinson. Stability theorems for systems of inequalities, Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13: 497-513, 1976.
-
(1976)
SIAM J. Numer. Anal
, vol.13
, pp. 497-513
-
-
Robinson, S.M.1
-
14
-
-
0036671312
-
Properties of the log-barrier function on degenerate nonlinear programs
-
S.J. Wright and D. Orban. Properties of the log-barrier function on degenerate nonlinear programs. Math. Oper. Res. 27: 585-613, 2002.
-
(2002)
Math. Oper. Res
, vol.27
, pp. 585-613
-
-
Wright, S.J.1
Orban, D.2
|